基于加权信息量和GIS方法的二郎山—折多山输电工程地质灾害易发性评价
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家电网有限公司科技项目(SGSCGD00JSJS2200361)


Geological Hazard Susceptibility Evaluation for Erlang Mountain-Zheduo Mountain Transmission Project Based on Weighted Information Value and GIS Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    西部地区输变电工程面临频繁的地震活动、崩塌、滑坡、泥石流等地质灾害的威胁,开展输变电工程地质灾害易发性评价,对西部山区输变电通道及站址的选择、地质灾害的监测与防控具有重要的理论与工程实际意义。以二郎山—折多山输电走廊沿线为研究区,基于遥感解译和地质灾害调查方法,在地质灾害发育特征研究基础上,从气象水文、地形地貌、岩土类型及构造等方面选取评价因子,采用皮尔逊相关系数法、CRITIC权重法、独立性权系数法构建了加权信息量模型。基于ArcGIS技术结合加权信息量法对二郎山—折多山输电工程地质灾害易发性进行评价,并采用ROC曲线和AUC值对所构建模型效果进行了验证,其AUC值为0.816 5,表明所建模型评价精度较高。

    Abstract:

    Transmission and transportation projects in western China face the threat of frequent seismic activities and geological hazards, and it is of great theoretical and engineering practical significance to carry out the susceptibility evaluation of geological hazards for transmission and transportation projects to select transmission and transportation channels and substation sites, and monitor, prevent and control geological hazards in the western mountainous areas. Based on remote sensing interpretation and geological hazard survey methods, and taking the areas along the transmission corridor from Erlang Mountain to Zheduo Mountain as the study area, the evaluation factors are selected from meteorology and hydrology, topographic features, lithology type and formation etc. based on the feature development researches of geological hazards, and a weighted information value model is constructed using Pearson correlation coefficient method, CRITIC weighting method and independence weighting coefficient method. The susceptibility evaluation of geological hazards for transmission projects from Erlang Mountain to Zheduo Mountain is carried out based on ArcGIS technology combined with weighted information value method. The DJIV model is verified by ROC curve and AUC value, and its AUC value is 0.816 5, which indicates that the DJIV model has high evaluation accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-13
  • 出版日期: