基于模糊C-均值聚类算法的台区电压与用户关系辨识
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM712

基金项目:

广东电网有限责任公司广州供电局科技计划项目(GZHKJXM20190062)


dentification of Relationship between Transformer and Users Based on Fuzzy C-means Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    用户的用电情况会影响台区电压偏离正常值,影响配电系统供电可靠性。本文为了实现供电系统的优化管理,提出一种基于模糊C-均值聚类的台区电压与用户关系辨识方法。首先对来自智能电表的不良数据进行处理和修补,然后采用PCA(主成分分析)法对其数据进行特征提取,并模拟不同对象进行模糊C-均值分类。根据多种数据特征,把用户归为大、中、小三个等级类型。采用皮尔逊相关系数,阐明各个等级类型用户的用电行为对台区的电压影响,构建明确的台区电压与用户之间的关系。以广州某小区为实例,通过历史数据进行了多场景仿真对比,验证了该辨识方法的有效性和适用性,结果表明该辨识方法能够快速识别某些特殊用户的用电行为及其对台区电压产生的异常影响。

    Abstract:

    The users’ electricity consumption will affect the voltage deviation from the normal value and affect the reliability of power supply of distribution system. In order to realize the optimal management of power supply, an identification method for relationship between transformer and users based on fuzzy c-means clustering is proposed. Firstly, the bad data from smart meter is identified and repaired, and then the principal component analysis (PCA) method is used to extract the features of the data, and the different objects are simulated for fuzzy c-means classification. According to a variety of data characteristics, users are classified into three levels: large, medium and small. The Pearson correlation coefficient is used to clarify the influence of electricity consumption behavior of different types of users on the voltage in the substation area, and to build a clear relationship between transformer and users. Taking a residential area in Guangzhou for example, the effectiveness and applicability of the proposed identification method are verified by comparing the historical data with multi-scene simulation. The results show that the proposed identification method can quickly identify the electricity consumption behavior of some special users and the abnormal impact on the voltage of the substation area.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-16
  • 出版日期: