考虑风电场储能容量配置风电功率预测误差估计算法对比研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research and Comparative Study on Wind Power Forecast Error Estimation Algorithms Considering Wind Farm Energy Storage Capacity Configuration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    针对风电功率预测误差估计方法中混合高斯分布拟合法和特征值提取估计法这两种适用范围较广的风电功 率预测误差估计方法,详细介绍其原理和误差估计流程,利用实际风电场数据对两种方法进行算例验证,并根据计算 结果,针对两种方法下的估计区间对储能容量配置的影响进行对比研究,为工程应用时的方法选取提供参考。同时, 为了兼顾误差估计区间的有效性和经济性,有效指导风电场储能系统的容量配置,在高斯混合模型的基础上对风电 功率预测误差进行状态划分,结合马尔可夫模型,提出一种MM-GMM优化预测误差区间估计算法并对其进行算例 验证。

    Abstract:

    In recent years, with the introduction of wind power forecast errors assessment policies, energy storage systems are widely used in engineering as an effective method to improve the forecast errors. Estimating wind power forecast errors effectively can not only provide a reference for the scheduling and operation of wind power integration systems, but also guide the reasonable configuration of energy storage system for wind farm. Hence, it is necessary to estimate the wind power forecast errors. Aiming at two common wind power forecast error estimation methods, that is, the Gaussian mixture distribution fitting method and the eigenvalue extraction method, the principle and process of these two methods are introduced in detail. Moreover, these two methods are verified by the actual wind farm data, and the estimation intervals of two methods are compared according to the impact on energy storage capacity configuration. In order to give consideration to the accuracy and validity of error estimation interval and guide the configuration of energy storage system effectively, based on Gaussian mixture model (GMM) and combined with Markov model (MM), an MM-GMM based optimized forecast error interval estimation algorithm is proposed and verified

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-02
  • 出版日期: