基于矩阵特征值分析和SOA优化模糊聚类的变压器故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM406

基金项目:

国家自然科学基金项目(51567002,50767001);?广东省公益研究与能力建设专项资金项目(2014A010106026);?广东电网有限责任公司科技项目(031600KK52160004);


Transformer Fault Diagnosis Based on Matrix Eigenvalue Analysis and Optimized Fuzzy Clustering of Seeker Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    考虑变压器故障诊断的不确定性,构建了变压器模糊聚类模型,提出了用矩阵特征值分析方法得出样本集最佳分类数,实现了无监督的故障诊断。针对模糊C均值算法用于变压器故障诊断存在的问题,提出用人群搜索算法(SOA)得到较优的初始聚类中心。SOA算法是一种新型的启发式智能算法,克服了粒子群算法(PSO)和遗传算法(GA)等智能优化算法收敛性差、局部寻优的缺陷。仿真结果表明,该算法收敛速度更快,且具有更好的全局搜索能力,比传统的智能算法具有更高的有效性和鲁棒性,为变压器故障诊断聚类分析提供了参考。

    Abstract:

    A fuzzy clustering model is presented considering the uncertainty of transformer fault diagnosis,and a matrix eigenvalue analysis method is proposed to estimate the correct number of clusters which can implement the unsupervised fault diagnosis. Aiming at the problem existed in fuzzy c - means clustering algorithm which is applied to transformer fault diagnosis, seeker optimization algorithm ( SOA) is introduced to obtain the optimized initial clustering center. SOA simulates human random search behavior and overcomes the defects of particle swarm optimization ( PSO) and genetic algorithm ( GA) with local search and poor convergence. Simulation results show that SOA has a higher convergence speed and a better global searching ability. Comparing with the traditional intelligent optimization algorithms,SOA is more effective and robust,which can give a reference for transformer fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

陶飞达,吴杰康,曾振达,梁浩浩,邹志强,张丽平,黄智鹏,杨夏.基于矩阵特征值分析和SOA优化模糊聚类的变压器故障诊断[J].四川电力技术,2018,41(3):1-5+24.
Tao Feida, Wu Jiekang, Zeng Zhenda, Liang Haohao, Zou Zhiqiang, Zhang Liping, Huang Zhipeng, Yang Xia. Transformer Fault Diagnosis Based on Matrix Eigenvalue Analysis and Optimized Fuzzy Clustering of Seeker Optimization Algorithm[J]. SICHUAN ELECTRIC POWER TECHNOLOGY,2018,41(3):1-5+24.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-14
  • 出版日期: