基于矩阵特征值分析和SOA优化模糊聚类的变压器故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM406

基金项目:

国家自然科学基金项目(51567002,50767001);?广东省公益研究与能力建设专项资金项目(2014A010106026);?广东电网有限责任公司科技项目(031600KK52160004);


Transformer Fault Diagnosis Based on Matrix Eigenvalue Analysis and Optimized Fuzzy Clustering of Seeker Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    考虑变压器故障诊断的不确定性,构建了变压器模糊聚类模型,提出了用矩阵特征值分析方法得出样本集最佳分类数,实现了无监督的故障诊断。针对模糊C均值算法用于变压器故障诊断存在的问题,提出用人群搜索算法(SOA)得到较优的初始聚类中心。SOA算法是一种新型的启发式智能算法,克服了粒子群算法(PSO)和遗传算法(GA)等智能优化算法收敛性差、局部寻优的缺陷。仿真结果表明,该算法收敛速度更快,且具有更好的全局搜索能力,比传统的智能算法具有更高的有效性和鲁棒性,为变压器故障诊断聚类分析提供了参考。

    Abstract:

    A fuzzy clustering model is presented considering the uncertainty of transformer fault diagnosis,and a matrix eigenvalue analysis method is proposed to estimate the correct number of clusters which can implement the unsupervised fault diagnosis. Aiming at the problem existed in fuzzy c - means clustering algorithm which is applied to transformer fault diagnosis, seeker optimization algorithm ( SOA) is introduced to obtain the optimized initial clustering center. SOA simulates human random search behavior and overcomes the defects of particle swarm optimization ( PSO) and genetic algorithm ( GA) with local search and poor convergence. Simulation results show that SOA has a higher convergence speed and a better global searching ability. Comparing with the traditional intelligent optimization algorithms,SOA is more effective and robust,which can give a reference for transformer fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-14
  • 出版日期: