基于自组织映射的改进 BP 神经网络短期光伏出力预测研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:


Study on Prediction of Short - term Photovoltaic Output Power with Improved BP Neural Network Based on Self - organizing Mapping
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    针对光伏发电出力随机波动给电网调度造成困难这一问题,提出了一种基于 SOM - PSO - BP 的模型对光伏 有功功率进行短期预测,用于提高电网对可再生能源的调度能力。首先采用自组织映射对原始数据组进行聚类降 维; 接着使用粒子群算法对 BP 神经网络的权重和偏置矩阵进行寻优; 然后利用训练集构造 SOM - PSO - BP 预测模 型; 最后在对比仿真中验证了所提方法的有效性。

    Abstract:

    The random fluctuation of photovoltaic power generation may cause difficulties for power grid dispatching,so a short - term prediction model based on SOM - PSO - BP is proposed,which will improve the dispatching ability of renewable energy by power grid. Firstly,the self - organizing mapping is used to reduce and cluster the dimension of the original data. Secondly,the weight and bias matrix of BP neural network are optimized by using particle swarm algorithm,and then the SOM - PSO - BP prediction model is constructed by using the training sets. Finally,the effectiveness of the proposed method is verified in the simulation.

    参考文献
    相似文献
    引证文献
引用本文

詹仲强,余 金,郭 志,王银涛,克帕依吐·吐尔逊.基于自组织映射的改进 BP 神经网络短期光伏出力预测研究[J].四川电力技术,2018,41(2):24-28+67.
Zhan Zhongqiang, Yu Jin, Guo Zhi, Wang Yintao, Kepaiyitulla·Tursun. Study on Prediction of Short - term Photovoltaic Output Power with Improved BP Neural Network Based on Self - organizing Mapping[J]. SICHUAN ELECTRIC POWER TECHNOLOGY,2018,41(2):24-28+67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-19
  • 出版日期: