摘要:针对当前局部地区短路容量水平已接近现有设备额定值的情况,提出一种短路容量智能辨识方法。利用基于潮流的短路计算法计算系统各母线的最大短路容量,通过对典型潮流下灵敏度的计算,选择对短路容量贡献程度较大的发电机、负荷的有功出力作为输入特征向量,建立训练样本,对广义回归神经网络(GRNN)进行训练,构成该电网结构下的短路容量辨识的人工神经网络。应用该模型对运行中电网的母线短路容量水平进行快速扫描,为智能电网与智能调度中的故障识别快速仿真建模(FSM)提供了一种新思路。通过IEEE 30节点系统验证了该方法的可行性与有效性。