短导体并联下的三相电流不平衡机理分析

张 纯^{1,2}, 钟 威¹, 石 涛¹, 林 波¹, 苏明虹^{1,2}, 熊 攀³

(1. 四川蜀能电科能源技术有限公司,四川 成都 611430;2. 国网四川省电力公司电力科学研究院, 四川 成都 610041;3. 国网四川省电力公司泸州供电公司,四川 泸州 646000)

摘 要:针对电力系统中短导体并联引发的三相电流不平衡现象因缺乏标准规范约束给生产运维所带来的困扰,从 阻抗参数差异角度揭示了短导体并联下三相电流不平衡的机理,指出其本质为并联回路间三相阻抗比例不匹配引起 的分流差异,并通过四川电网典型案例(同塔双回、非同塔双回、混合组塔线路及开关场内部导体)进行了仿真研究。 研究表明,通过调整相序排布或换相措施可有效改善电流平衡度。研究结果为短距离并联导体设计与运维提供了理 论依据及实践参考,建议在并联导体规划中注重三相阻抗一致性或阻抗比例匹配。

关键词:短导体并联; 三相电流不平衡; 阻抗匹配; 相序优化

中图分类号:TM 743 文献标志码:A 文章编号:1003-6954(2025)01-0018-05 DOI:10.16527/j.issn.1003-6954.20250103

Analysis on Three-phase Current Unbalance Mechanism under Parallel Connection of Short Conductors

ZHANG Chun^{1,2}, ZHONG Wei¹, SHI Tao¹, LIN Bo¹, SU Minghong^{1,2}, XIONG Pan³

(1. Sichuan Shuneng Electric Energy Technology Co., Ltd., Chengdu 610041, Sichuan, China;

- 2. State Grid Sichuan Electric Power Research Institute, Chengdu 610041, Sichuan, China;
- 3. State Grid Louzhou Electric Power Supply Company, Luzhou 646000, Sichuan, China)

Abstract: Aiming at the troubles in production and operation brought by three-phase current unbalance caused by the parallel connection of short conductors in power system due to the lack of standard specification constraints, the mechanism of three-phase current unbalance mechanism under parallel connection of short conductors is revealed from the perspective of impedance parameter differences, and it is pointed out that the essence is the differences in current distribution caused by the mismatch in the ratio of three-phase impedances in parallel circuits. The simulation research is carried out through the typical cases in Sichuan power grid, such as double-circuit transmission line on the same tower, double-circuit transmission line on separate towers, hybrid tower line and conductors inside the switchyard, and it shows that the current balance degree can be improved effectively through phase sequence adjustment or phase commutation measures. The research findings provide theoretical basis and practical references for the design and operation and maintenance of short-distance parallel conductors. It is recommended to pay attention to the consistency of three-phase impedance or the matching of impedance ratios in the planning of parallel conductors. **Key words**: short conductors in parallel; three-phase current unbalance; impedance matching; phase sequence optimization

0 引 言

电力系统中的各级高压输配电网络均采用三相 制系统,电压和电流的三相对称性是电力系统安全 优质运行的基本要求^[1]。电压的三相对称度是电 能质量的重要考核指标,国家标准已有明确要求;但 电流的三相对称性问题,目前尚无相关标准规范提 出明确要求。通常,为保证电流的三相对称性,电网中的各类元件参数需要三相基本一致。其中,发电机、变压器、无功补偿设备等元件在生产制造环节实现三相参数的平衡;输电线路、电缆则通过换位、交叉互联等方式使三相参数基本平衡。所以排除负载的三相严重不对称情况,电流的三相对称性一般也能得到保证。然而在实际电网中,当线路较短未进行换位、交叉互联、多导体并联运行时,由于相间阻

抗差异引起的三相电流不平衡现象时有出现[2-4], 给正常运行带来困扰。三相电流不平衡主要带来两 方面问题:一是干扰继电保护正常运行,二是引起线 路损耗增大。这种短导体并联情况下三相电流不平 衡产生的原因在现行规范、标准中属于尚无约束的 盲区。目前,对同塔多回线路三相电流不平衡的研 究大多采用仿真模拟方法进行穷举归纳^[5-7],对其 本质机理的揭示还不够深入。文献[8]从环流电势 和穿越电势的角度剖析了同塔多回线路三相电流不 平衡的机理,是对同塔多回线路三相电流不平衡的 一种机理解释。下面从并联阻抗分流的角度对这一 类电流不平衡问题的机理进行阐释,并结合四川电 网近几年出现的案例,给出同塔双回并列输电线路、 非同塔双回并列输电线路、混合组合塔并列输电线 路以及开关场内部开关电流三相电流不平衡问题的 实例分析,为短距离并联输电线路以及发电厂、变电 站场站内部并联导体在设计过程中避免三相不平衡 电流提供理论遵循与案例参考。

1 短导体并联三相电流不平衡机理

单回线路两端传输系统如图 1 所示,其中 S_1 和 S_2 分别代表两端的等值系统; Z_{s1} 和 Z_{s2} 为系统的等 值内阻抗; Z_{a} 、 Z_{b} 、 Z_{c} 分别为联络线三相正序阻抗。

图1 单回线路两端传输系统

联络线上的电流为

$$\begin{cases} \dot{I}_{a} = \frac{\dot{U}_{s1} - \dot{U}_{s2}}{Z_{s1} + Z_{s2} + Z_{a}} \\ \dot{I}_{b} = \frac{\dot{U}_{s1} - \dot{U}_{s2}}{Z_{s1} + Z_{s2} + Z_{b}} \\ \dot{I}_{c} = \frac{\dot{U}_{s1} - \dot{U}_{s2}}{Z_{s1} + Z_{s2} + Z_{c}} \end{cases}$$
(1)

当联络线较短时, Z_a 、 Z_b 、 Z_c 远小于 Z_{s1} 、 Z_{s2} ,线路阻抗对电流的影响很小,近似忽略线路阻抗在串联回路中的影响,可认为三相电流幅值 I_a 、 I_b 、 I_c 近似相等。

$$|\dot{I}_{a}| = |\dot{I}_{b}| = |\dot{I}_{c}| \approx \frac{\dot{U}_{s1} - \dot{U}_{s2}}{Z_{s1} + Z_{s2}}$$
 (2)

若联络线足够长, Z_a 、 Z_b 、 Z_c 远小于 Z_{s1} 、 $Z_{s2}这一前提不再满足,一般需要采取一定的措施来保证$ 三相参数平衡进而确保三相电流平衡,例如DL/T 5562—2019《换流站阀系统设计技术规程》中规定:"对于110 kV~750 kV 线路,长度超过100 km的线路宜换位",以此来保证三相参数对称。

双回线路并联的两端传输系统如图 2 所示,假 定线路 1、2 三相正序阻抗分别为 Z_{a1} 、 Z_{b1} 、 Z_{c1} 和 Z_{a2} 、 Z_{b2} 、 Z_{c2} 。当线路较短时,式(2)对于图 2 所示的传 输系统仍然成立,即三相电流 I_a 、 I_b 、 I_c 幅值相等。

图 2 双回线路并联两端传输系统

根据电路原理,在两回线路之间存在的分流关 系为

$$\dot{I}_{a1} = \frac{Z_{a2}}{Z_{a1} + Z_{a2}} \dot{I}_{a}, \\ \dot{I}_{a2} = \frac{Z_{a1}}{Z_{a1} + Z_{a2}} \dot{I}_{a}$$
$$\dot{I}_{b1} = \frac{Z_{b2}}{Z_{b1} + Z_{b2}} \dot{I}_{b}, \\ \dot{I}_{b2} = \frac{Z_{b1}}{Z_{b1} + Z_{b2}} \dot{I}_{b}$$
(3)

$$\dot{I}_{c1} = \frac{Z_{c2}}{Z_{c1} + Z_{c2}} \dot{I}_{c}, \dot{I}_{c2} = \frac{Z_{c1}}{Z_{c1} + Z_{c2}} \dot{I}_{c}$$

当线路之间阻抗存在差异时,会引起两回线之间不均匀分流,假定线路阻抗存在如式(4)所示的关系,

$$|Z_{a1}| > |Z_{a2}|$$

$$|Z_{b1}| = |Z_{b2}|$$

$$|Z_{b1}| < |Z_{b2}|$$
(4)

则两回线路的三相电流会呈现式(5)所示的不平衡 关系。

$$|\dot{I}_{a1}| < |\dot{I}_{b1}| < |\dot{I}_{c1}| |\dot{I}_{a2}| > |\dot{I}_{b2}| > |\dot{I}_{c2}|$$
(5)

由于这种三相电流不平衡仅存在于并联的两回 线路内部,两回线路的总电流是平衡的,因此节点电 压也并不会受到影响。但此类不平衡还是会加剧线 路损耗并干扰继电器保护。

2.1 同塔双回线路

500 kV 月锦双回线长度为 12.5 km, 同塔双回 架设, 全线不换位, 相序配合如图 3 所示。月锦线投 运后, 大负荷期间出现较大不平衡电流, 如表 1 所示。

	表1 月锦双约	线不平衡电流	单位:	Ą
线路名称	$I_{\rm a}$	$I_{ m b}$	I _c	
月锦I线	2279	2189	2067	
月锦Ⅱ线	2086	2157	2259	
				7

从数据可以看到月锦双线的不平衡电流分布呈现"同相互补、总和平衡"特征,月锦Ⅰ、Ⅱ线电流分 布规律为:月锦Ⅰ线 I_a>I_b>I_c,月锦Ⅱ线 I_c>I_b>I_a。 从空间位置分布看,电流均为中相最大、上相次之、 下相最小,电流幅值的分布与空间位置分布呈现出 较强的联系。

图 3 月锦线同塔双回导线排布

采用如下方法计算线路参数:首先,依据其几何 尺寸及导线规格建立杆塔模型,得到线路的阻抗矩 阵;然后,为两回线路施加正序电压,进而得到正序 电流;最后,通过电压和电流的相量相除得到线路正 序阻抗。表2为计算得到6种不同相序布置下的正 序电感,其中:第1、2种挂线方式为异相序(第1种 方式即为月锦线原本采用的方式),其特点是两回 线路中某一相阻抗相等,其他两相阻抗大小关系互 异,根据式(3)并联分流关系可知线路三相电流将 出现不平衡;第3、4种方式为同相序挂线方式,虽然 各相阻抗大小不同,但Ⅰ线与Ⅱ线之间同一相的阻 抗相等,三相电流在两回线路之间的分流比例为 1:1,因此三相电流基本平衡;第5、6种方式为逆相 序,三相之间的阻抗差异很小,并且Ⅰ、Ⅱ线之间同 名相的阻抗基本相等,因此三相电流基本平衡。

从阻抗计算结果可以看出,异相序排布的同塔 双回导线,如不采取换位措施,将出现线路电流的三 相不平衡。搭建仿真模型对表 2 列出的 6 种导线排 布方式进行仿真,结果如表 3 所示,不同导线排布方 式下的电流分布规律与前述理论分析吻合。

表 2 月锦双线采用不同相序排布时的线路电感

它旦	」 月锦Ⅰ、Ⅱ线	A、B、C 相导线电感/mH			
厅写	导线排布	月锦I线	月锦Ⅱ线		
1	BAC/BCA	9.3,11.3,10.5	10.5,11.3,9.3		
2	ABC/CAB	10.2,9.3,9.5	9.3,10.2,9.5		
3	3 BAC/BAC	9.5,11.4,11.2	9.5,11.4,11.2		
4 ABC/ABC	ABC/ABC	11.4 9.5 11.2	11.4,9.5,11.2		
5	5 ABC/CBA	9.3 9.5 9.3	9.3 9.5 9.3		
6	BCA/ACB	9.3 9.3 9.5	9.3 9.3 9.5		
表	表 3 月锦双线不同相序排布时的电流仿真结果				

它旦	月锦Ⅰ、Ⅱ线 导线排布	ABC 相电流/A				
厅 与		月锦Ⅰ线	月锦Ⅱ线			
1	BAC/BCA	2245 2136 2035	2068 2125 2245			
2	ABC/CAB	2051 2206 2183	2215,2053,2154			
3	BAC/BAC	2138 2134 2127	2138、2134、2127			
4	ABC/ABC	2124 2124 2150	2124 2124 2151			
5	ABC/CBA	2138 2123 2144	2125 2132 2144			
6	BCA/ACB	2146、2124、2135	2136、2121、2143			

此后,月锦双线调整了相序布置,采用Ⅰ线 BCA、Ⅱ线 ACB 的逆相序挂线,解决了三相电流不 平衡问题,调整后实测三相电流如表4所示。

表 4 月锦双线调整为逆相序后的电流 单位:A

线路名称	I _a	$I_{ m b}$	I _c
月锦Ⅰ线	336.9	320.3	337.3
月锦Ⅱ线	338.8	319.5	336.5

2.2 非同塔双回并列线路

500 kV 宾复线长度约 13.5 km,全线按两个单 回线路架设,导线水平布置,全线不换位。宾复双线 投运后出现三相电流不平衡,如表 5 所示。

表 5 **宾复双线不平衡电流** 单位:A

线路名称	I _a	$I_{ m b}$	I _c
宾复一线	1332	1235	1356
宾复二线	1282	1380	1255

图 4 为宾复双线相序配合示意图,宾复一线为 从左至右依次为 ACB 相,宾复二线从左至右为 ABC 相。

宾复双线为两个水平布置的单回线,回间距离 约80m,远大于相间距离,因此不考虑一、二回之间 的互感。建立水平排布导线的杆塔模型,计算宾复 双线的正序电感,结果如表6所示。其中第1种方式

图 4 宾复双线导线排布

为当前方式,第2种方式为同相序,第3种方式为逆 相序。可以看到,水平布置的单回输电线路的中相 电感比边相电感略小,从而导致该回线路中间相与 另一回线路的边相并联时分得更大的电流。

仿真 3 种不同相序配合关系下的双回线电流, 结果如表 7 所示,表 7 中的电流与表 6 中的电感数 量关系吻合。可以看出,宾复双线电流三相不平衡 的机理与月锦线案例相似,水平异相序排布方式导 致三相电流不平衡。

序	宾复一、二线	ABC 相导线电感/mH		
号	导线排布	宾复一线	宾复二线	
1	ACB/ABC	10.0,10.2,9.3	10.2,9.3,10.0	
2	ABC/ABC	10.1,9.3,10.2	10.1,9.3,10.2	
3	CBA/ABC	10.0 \9.3 \10.2	10.2,9.3,10.0	
	表7 宾复双	线不同排布下的电	l流仿真结果	
序	宾复一、二线	ABC 相	电流/A	
号	导线排布	官复线	定复一线	
		英友 线	7 <u>2</u> -2	
1	ACB/ABC	1310,1251,1345	1287,1363,1252	

表 6 宾复双线不同排布下的正序电感

此后,宾复线采取了换相措施,改接方式为:宾 复一线 CBA,宾复二线 ABC,改接后电流不平衡明 显改善,如表 8 所示。

1313,1299,1313

1284,1299,1313

单位:A

表 8 宾复双线换相后三相电流

线路名称	I _a	$I_{ m b}$	I _c
宾复一线	277	282	278
宾复二线	276	281	279

2.3 异塔双回导线并联

CBA/ABC

3

500 kV 姜雅双线由原大岗山至雅安双线路开 π形成,大岗山至雅安双回 500 kV 线路开断接入姜 城开关站,形成 500 kV 大姜一、二线和 500 kV 姜雅 一、二线共计4 回线路。其中,姜雅双回线路总长约 29.5 km,核心段长度 25.6 km 为混合组塔架设,大姜 一线与姜雅二线同塔,大姜二线与姜雅一线同塔。 相序配合关系如图 5 所示。该段线路中姜雅一、二 线的挂线方式为异塔异相序,其三相电流存在不平 衡现象,如表 9 所示。

图 5 同塔段导线排布

 畄 合 →

N)	安加风戏		平位:5
线路名称	I _a	$I_{ m b}$	I _e
姜雅一线	941	920	859
姜雅二线	824	840	931

美班双线不亚衡由流

由表9数据可以看出,姜雅双线的三相电流不 平衡也是典型的短线路并列相间分流系数不均引起 的三相电流不平衡。搭建杆塔模型,计算姜雅双回 线路的三相电感及对应的电流分布,同时保持大姜 线排列方式为当前方式不变,调整姜雅双线的导线 相序排布,结果如表 10、表 11 所示。应当指出,由 于混合组塔,大姜线电流情况对姜雅线的参数有直 接影响,此处的计算结果为大姜线与姜雅线负荷电 流近似相等、相位差约 170°条件下的。

表 10 姜雅双线电感计算结果 单位:mH

序号	大姜二线/ 姜雅一线 导线排布	大姜一线/ 姜雅二线 导线排布	姜雅一线 ABC 相电感	姜雅二线 ABC 相电感
1	ACB/BAC	BAC/ACB	20.2 23.8 22.0	23.5,24.5,20.2
2	ACB/BAC	BAC/BAC	20.2 23.8 22.0	20.3 20.5 21.0
3	ACB/CAB	BAC/BAC	20.3,20.6,24.2	20.3 20.5 21.0
	ŧ	長11 姜雅双	双线不平衡电流	单位:A
序	大姜二线/	大姜一线/	姜雅一线	姜雅二线

号	姜雅一线 导线排布	姜雅二线 导线排布	ABC 相电流	ABC 相电流
1	ACB/BAC	BAC/ACB	956,906,849	844 \ 860 \ 958
2	ACB/BAC	BAC/BAC	901 849 870	907 962 924
3	ACB/CAB	BAC/BAC	898,914,871	902_916_924

表 10、表 11 中第 1 种方式为当前挂线方式,仿真 计算得到的电流结果与表 9 实测结果基本吻合,电流 分配关系与电感大小关系对应吻合。调整相序排布 后,导线电流分布相应改变,表 10、表 11 中第 2、3 种方式分别为异塔同相序和异塔逆相序,电流平衡 度均有明显改善,但由于混合组塔受到大姜线电流 耦合影响,并没有达到完全改善三相不平衡的效果。

2.4 开关场内部引流线导体长度不一致

雅砻江换流站投运后,发现交流开关场第11、 第12 串断路器电流三相严重不平衡,如表12 所 示。1号母线(1M)侧和2号母线(2M)侧的断路器 三相不平衡电流表现出"同相互补、总体平衡"特 点,符合短导体并联三相电流不平衡特征。

T協法社戶厶断攻哭守测由法

Ak 12	准石	口凹凹的天心	则电加 早位:A
断路器编号	A 相	B 相	C 相
5133	730	596	706
5123	328	258	193
5113	915	845	789
5103	449	431	403
5132	86	117	106
5122	191	139	44
5112	292	350	411
5102	449	432	402
5131	212	235	259
5121	618	677	776
5111	291	349	411
5101	788	804	843

排查设备发现,雅砻江站 GIS 母线为竖直排列, 1M 侧从上至下分别为 ABC 相,2M 侧从上至下为 CBA 相。断路器采用一字型排列,与母线平行。因 此,交流场边断路器与母线之间的连接段长度存在 差异,1M 侧 A 相最长、C 相最短,2M 侧正好相反是 C 相最长、A 相最短,如图 6 所示,连接段相邻两相 之间的长度差约为 3.2 m。

图 6 雅砻江站交流开关场 500 kV 母线空间布置

GIS 导体长度决定阻抗,长度差异导致阻抗差异。雅砻江站开关场第10~13 串接线如图7所示, 其中间隔1至间隔4为4条500 kV线路,间隔5、间 隔6均为换流变压器。第12、13 串接入4回线路是 一个相对集中的潮流受入点,由此受入的潮流向其 他间隔传输时可沿1号母线和2号母线两个方向不 同路径传输。

图 7 雅砻江站第 11、12 串电流路径

以间隔 3 流入电流向间隔 5 传播为例,电流可 沿路径 1 和路径 2 两条路径传输,在路径 1 中:A 相 阻抗>B 相阻抗>C 相阻抗;在路径 2 中:C 相阻抗> B 相阻抗>A 相阻抗,这种阻抗差异,导致电流在向 两侧母线分流时三相电流的分流比例不一致。按照 阻抗并联分流原理,电流与阻抗成反比,因此应当 有:流经 1M 侧的电流 I_a<I_b,流经 2M 侧的电流 I_a>I_b>I_c。参照表 12 现场实测数据可知,现场断路 器电流实际情况与理论分析吻合。事实上,这一电 流分布规律在雅砻江站交流场普遍存在,而在第 11 串和 12 串中最为突出,原因是第 11、12 串间隔相邻 且交换功率大,母线与边断路器之间连接的三相不 平衡阻抗在整个回路中所占的比例高,因此这两串 断路器电流的不平衡也就最为突出。

按照雅砻江站 GIS 实际拓扑及各部分导体长度 对开关场进行建模,计算得到的第 10~13 串电流如 表 13 所示,仿真得到的电流水平及三相之间的大 小关系与表 12 中实测数据基本吻合,印证了前述 分析。

3 结 论

短导体并联参数匹配不当引起三相电流不平衡 的机理,本质是各相电流在两回线之间的分流比例 不一致,在各回线内部表现出三相电流不平衡。这 种三相电流不平衡仅存在于各回线路内部,两回线 (下转第56页) SOC estimation based on whale optimization algorithm and unscented Kalman filter[J]. Journal of Renewable Sustainable Energy, 2020,23: 065501.

- [21] HUANG C, WANG Z H, ZHAO Z H, et al. Robustness evaluation of extended and unscented Kalman filter for battery state of charge estimation [J]. IEEE Access, 2018, 6:27617-27628.
- [22] NASERI F, SCHALTZ E, STROE D-I, et al. An enhanced equivalent circuit model with real-time parameter identification for battery state-of-charge estimation [J]. IEEE Transactions on Industrial Electronics, 2022, 69(4):3743-3751.

作者简介:

罗 飞(1974),男,硕士,高级工程师,研究方向为电力 负荷预测管理、电网稳定运行控制、电力设备状态检修等;

(上接第 22 页)

表 13 雅砻江换流站 GIS 电流仿真结果 单位:A

开关编号	A 相	B 相	C 相
5133	736	716	700
5123	338	255	168
5113	939	852	767
5103	453	430	412
5132	79	96	110
5122	202	119	33
5112	285	361	440
5102	453	430	412
5131	207	227	243
5121	609	690	776
5111	285	361	440
5101	809	828	855

并联的电流总和是三相平衡的,因此不会引起系统 节点电压的三相不平衡。在电力系统中,类似短距 离输电线路乃至开关场内部的引流线这类短导体, 由于其阻抗绝对量值小,三相之间的阻抗差异时常 不被重视。但当两回短线并联时,若阻抗匹配不当, 就会引起三相电流不平衡,给生产运维带来现实的 困扰。由于缺乏相应的标准规范约束,这类问题在 电力系统中多有发生。为避免这类问题的产生,应 当在并联短距离输电线路或短导体形成环网时,尽 量使三相导体阻抗一致;不能保证三相导体阻抗一 致时,也应尽量保证并联的两回导体之间三相阻抗 的比例一致,避免三相不平衡电流产生。

参考文献

[1] 全国电压电流等级和频率标准化技术委员会.电能质 量三相电压不平衡:GB/T 15543—2008[S].北京:中 绕俊星(1990),男,硕士,高级工程师,研究方向为电力 负荷预测管理、电力设备状态检修;

王江林(1997),男,硕士,研究方向为储能锂离子电池 阵列状态估计;

李立秋(1970), 女, 硕士, 高级工程师, 研究方向为电力 负荷预测管理、电网稳定运行控制、电力设备状态检修等;

陈 瑶(1992),女,硕士,工程师,研究方向为电力负荷 预测管理、电费电价研究;

肖 军(1983),男,硕士,高级工程师,研究方向为电力 负荷预测管理、电网规划运行控制、电网运行管理控制等;

张 波(1985),男,硕士,高级工程师,研究方向为电力 负荷预测管理、电力设备运维检修等;

袁成锋(1984),男,高级工程师,研究方向为电力负荷 预测管理、变电设备状态检修等。

(收稿日期:2024-03-31)

- 国标准化出版社,2008. [2] 孙旭威.某电厂 500 kV 输电线路三相电流不平衡原因 分析[J].东北电力技术,2021,42(8):45-48.
- [3] 孟恒信,梁建伟,薛磊,等.山西 500 kV 长久三回线路
 电流不平衡原因分析及改造研究[J].电网技术,
 2013, 37(3):641-646.
- [4] 唐明,张纯,丁理杰,等.同塔双回输电线路电流不平衡 机理分析[J].四川电力技术,2015,38(5):29-32.
- [5] 周雷,薛飞,李宏强,等.同塔四回输电线路三相不平衡 电流仿真分析[J].宁夏电力,2023(3):16-22.
- [6] 董尔佳,郭袅,金镇山,等.220 kV 同塔双回输电线路电流不平衡问题研究[J].黑龙江电力,2013,35(1):9-12.
- [7] 吴成. 江西电网 220 kV 同塔双回线不平衡问题研 究[D].南昌:南昌大学,2018.
- [8] 赵艳军,陈晓科,陈迅,等.同塔多回输电线路三相 电流不平衡的机理及解决方法[J].广东电力,2015, 28(6):75-81.

作者简介:

张 纯(1985),男,硕士,高级工程师,研究方向为电力 系统控制与保护;

钟 威(1988),男,学士,工程师,主要研究方向为电力 系统调试与设备检测技术;

石 涛(1985),男,学士,工程师,主要研究方向为电力 系统分析与调试技术;

林 波(1987),男,学士,工程师,主要研究方向为电力 系统分析与调试技术;

苏明虹(1975),男,硕士,高级工程师,主要研究方向为 电力系统工程调试技术;

熊 攀(1983),男,学士,高级工程师,主要研究方向为 电力系统运维检修技术。