自动电压控制对双馈风场小干扰阻尼影响分析

朱建华¹,朱力维²,周 \mathbf{J}^3

(1. 润电能源科学技术有限公司,河南郑州 450000;2. 鹤壁丰鹤发电

有限责任公司,河南 鹤壁 458008;3. 国网新疆电力有限公司电力科学

研究院,新疆乌鲁木齐 830011)

摘 要:为解决传统双馈风场中自动电压控制系统延迟较大、对系统影响不确定的问题,建立了包含自动电压控制的 双馈风场并网系统小干扰分析模型。首先,在考虑自动电压控制中非线性环节的前提下,推导了含延迟环节的双馈 风场并网系统的小干扰模型,利用线性化原理形成了双馈风场的小干扰模型,用于描述双馈风场阻尼转矩的表达式; 然后,通过小干扰模型,获得了双馈风场有功增量和功角增量之间的表达式;最后,通过理论计算与仿真结果对比,验 证了该模型的有效性。研究结果表明,所提模型能描述双馈风场在小扰动时的阻尼分量,为研究双馈风场稳定提供 理论依据。

关键词:双馈风场;延迟;自动电压控制;阻尼转矩 中图分类号:TM 76 文献标志码:A 文章编号:1003-6954(2024)02-0017-08 DOI:10.16527/j.issn.1003-6954.20240204

Influence of Automatic Voltage Control on Small-signal Stability of Doubly-fed Wind Farm

ZHU Jinahua¹, ZHU Liwei², ZHOU Yong³

(1. Rundian Energy Science and Technology Co., Ltd., Zhengzhou 450000, Henan, China;

 Hebi Fenghe Power Generation Co., Ltd., Hebi 458008, Henan, China; 3. State Grid Xinjiang Electric Power Research Institute, Urumqi 830011, Xinjiang, China)

Abstract: In order to solve the problems of large delay and uncertain impact on automatic voltage control system in traditional doubly-fed wind farm, a small interference analysis model for grid connected system of doubly-fed wind farm including automatic voltage control is established. Firstly, considering the nonlinear link in automatic voltage control, the small interference model for grid connected system of doubly-fed wind farm with delay link is deduced, and the small interference model of doubly-fed wind farm. Next, the expressions of active power increment and power angle increment of doubly-fed wind farm are obtained through the small interference model. Finally, the effectiveness of the proposed model is verified by comparing the calculation with the simulation results. The results show that the proposed model can describe the damping component of doubly-fed wind farm under small disturbance, which provides a theoretical basis for the study of doubly-fed wind farm stability.

Key words: doubly-fed wind farm; delay; automatic voltage control; damping torque

0 引 言

风力发电因具备资源丰富、清洁高效等优点在 国内外得到广泛应用,随着中国"双碳"目标的提 出,风力发电机的前景将更加广阔。双馈风力发电 机组由于有可靠性高、故障率低的优点,因此在国内 风力发电机组中占据主流地位。分析研究双馈风场 对电力系统的稳定有着不可忽视的基础性意 义^[1-5]。

目前,对于双馈风场接入电网的电压稳定问题, 大量专家和学者做出一系列研究成果。文献[6]提 出了一种新的电压稳定指标用于双馈风场短时电压 稳定判断;文献[7]通过实例分析了大规模双馈风 场并网的弱电网的大尺度电压稳定问题,为实际中 电压稳定分析提供了范例。为弥补文献[6-7]的不 足,文献[8]研究了含双馈风场电力系统的短时电 压稳定的问题。上述文献从整体角度研究了含风电 的电力系统各个时间尺度的电压稳定问题。为扩充 含风电电力系统电压稳定研究的层次,文献[9]研 究了储能系统对含双馈风场电力系统电压稳定的影 响:文献[10]研究了静止同步补偿器对含双馈风场 电力系统电压稳定的影响:文献[11]则利用 P-V曲 线针对远距离传输线对含双馈风场的电力系统电 压稳定的不利影响进行分析,并提出了对应的解决 措施。

上述文献研究了含双馈风场的电力系统整体电 压稳定和局部元件对含双馈风场的电力系统电压稳 定影响。实际中自动电压控制系统对含双馈风场的 电力系统电压稳定影响较大[12],大量学者针对双馈 风场的系统电压控制展开大量研究,并取得一定的 研究成果。文献[13]应用灵敏度分析方法设计了 双馈风场的自动电压控制策略:文献[14]设计了协 调双馈风场和无功补偿设备的自动电压控制策略, 针对多时间尺度进行控制策略验证。文献[13-14] 仅讨论了单个风电场的自动电压控制策略的配置问 题;文献[15]在文献[13-14]基础上,研究了包含分 布式风电的自动电压控制系统协同控制的问题,更 加贴近实际电压稳定的工程背景。在上述文献的研 究基础上,文献[16]更进一步研究结合风电功率预 测系统的自动电压控制策略,满足了大规模风电接 入的无功电压要求。

双馈风场的自动电压控制由于通信延迟还存在 一定程度的延迟特性,文献[17]研究了双馈风场自 动电压控制的延迟问题,并针对延迟问题提出对应 的控制策略。

下面在已有的双馈风场小干扰模型和阻尼转矩 研究的基础上^[18],基于双馈风场的幅相动力学方 程,重点研究双馈风场在自动电压控制模式下的阻 尼转矩变化特征。首先,建立双馈风场的幅相运行 小干扰方程,并在模型的基础上考虑自动电压控制 系统中的延迟环节,推导了包含自动电压控制模型 的风电阻尼转矩表达式。该表达式能够反映出双馈 风场延迟环节对阻尼转矩的影响,有助于提升双馈风 场参与系统振荡的机理认识。最后,讨论了自动电压 控制中延迟对双馈风场阻尼转矩的影响,为实际系 统中配置和优化自动电压控制的参数提供了依据。

1 双馈风场的小干扰模型

图中:P和Q为双馈风电场机端的有功功率和无功 功率;U,为机端电压;P_{in}为双馈风场直流电容侧输 人有功功率; E 为双馈风场的等效内电势; i_a^a 为 d 轴 电流参考值;iⁿ,为q轴电流参考值;Eⁿ,为双馈风场 的等效内电势 d 轴分量; E^p_a 为双馈风场的等效内电 势q轴分量; X_m 为双馈风场的磁阻; U_1^* 为机端电压 参考值;Q₁*为无功功率参考值;I₀为无功功率支路比 例系数;s为拉普拉斯算子; θ_{e} 为 E 与无穷大母线电 压 V_s 之间夹角; θ_1 为 U_1 与 V_s 之间的夹角; PI_s 为无 功功率控制环传递函数;PI。为有功功率控制环传 递函数:f₄为机端电压与无功功率之间的函数:f₅为 有功功率、无功功率、机端电压与角度之间的函数; PIput为锁相环(phase-locked loop, PLL)比例积分函 数; f_1 和 f_2 为等效内电势E的q轴和d轴分量转化 为角度和幅值的函数; θ_n 为 PLL 的 d 轴与 V 的夹 角; θ_{a}^{p} 为 PLL 的 d 轴与 E 的夹角; ω_{r} 为转子电压转 速;w_r*为转子电压转速参考值;H为双馈风场对应 风机的转动惯量。双馈风场的等效内电势 E 和 U, 夹角如图 2 所示^[20],图中(d)PLL 为 PLL 的 d 轴所 在相位。

图 1 中部分函数的表达式为:

$$\theta_{\rm e} - \theta_{\rm t} = \arctan \frac{P x_{\rm f}}{E^2 - Q x_{\rm f}}$$
(1)

$$g(E,Q) = E - \frac{Qx_{\rm f}}{E}$$
(2)

图 2 双馈风场的电气回路的夹角关系

$$U_{t} = f_{4}(P,Q,E) = \sqrt{(Px_{f})^{2} + (E - Qx_{f})^{2}}/E$$
(3)

$$f_1(E_q^p, E_d^p) = \arctan \frac{E_q^p}{E_d^p}$$
(4)

$$f_2(E_d^p, E_q^p) = \sqrt{(E_d^p)^2 + (E_q^p)^2}$$
(5)

式中,x_f为双馈风场的等效内电势 E 与并网点电压 之间的等值电抗。

有功功率 P 和无功功率 Q 的表达式为:

$$P = \frac{EU_{t}\sin(\theta_{e} - \theta_{t})}{x_{f}}$$
(6)

$$Q = \frac{EU_{t}\cos(\theta_{e} - \theta_{t}) - U_{t}^{2}}{x_{f}}$$
(7)

对图1中的有功功率支路进行线性化可得:

$$\Delta \omega_{\rm r} = \frac{1}{2Hs} \Delta P \tag{8}$$

$$\Delta E_d^p = X_{\rm m} G_{\rm PI\omega}(s) \Delta \omega_{\rm r} \tag{9}$$

式中, $K_{pEq}(s)$ 为有功功率支路系数,对应的表达式 为 $K_{pEq}(s) = \frac{1}{2Hs} X_m G_{PI\omega}(s)$, $G_{PI\omega}(s)$ 为图1中有功功

率支路的 PI 环节的传递函数。

对无功功率支路进行线性化可得:

$$\Delta U_{\rm t}^* = I_{\rm Q} \Delta Q \tag{10}$$

$$E_d^p = -X_{\rm m}G_{\rm PIV}(s)\left(\Delta U_{\rm t} - \Delta U_{\rm r}^*\right)$$
(11)

式中,*G*_{PIV}(*s*)为图1中无功功率控制环的传递函数。 对有功功率和无功功率耦合部分进行线性化可得:

$$\Delta E = K_{Ed} \Delta E_d^p + K_{Eq} \Delta E_q^p \tag{12}$$

$$\Delta \theta_{\rm e}^{\rm p} = K_{\theta d} \Delta E_d^p + K_{\theta q} \Delta E_q^p \tag{13}$$

式中: $K_{\theta q} = E_{d0}^{p}/E_{0}^{2}$ 为角度与无功系数; $K_{Ed} = E_{d0}^{p}/E_{0}$ 为 d轴与风电场的等效内电势系数; $K_{Eq} = E_{q0}^{p}/E_{0}$ 为 q轴与风电场的等效内电势系数; $K_{\theta d} = -E_{q0}^{p}/E_{0}^{2}$ 为 d轴与角度系数。

对锁相环部分线性化可得

$$\Delta \theta_{\rm p} = \cos(\theta_{\rm t0} - \theta_{\rm p0}) \frac{1}{s} G_{\rm PLL}(s) \Delta(\theta_{\rm t} - \theta_{\rm p})$$
(14)

式中: $G_{\text{PLL}}(s)$ 为锁相环的 PI 控制器表达式;带有 0 下标的变量为对应变量的稳态值。由于 θ_{10} 与 θ_{p0} 近 似相等,可以认为 $\cos(\theta_{10}-\theta_{p0}) = 1$ 。

对式(14)进行重新整理,可得

$$\Delta \theta_{\rm p} = K_{\rm spt}(s) \Delta \theta_{\rm t} = \frac{G_{\rm PLL}(s)}{s + G_{\rm PLL}(s)} \Delta \theta_{\rm t}$$
(15)

式中,*K*_{spt}为锁相环与等值角度系数。 对式(6)一式(7)进行线性化可得:

$$\Delta \theta_{\rm e} = \Delta \theta_{\rm t} + \frac{2 \sin \delta_0}{U_{\rm t0}} \Delta E - \frac{x_{\rm f} \cos \delta_0}{E_0 U_{\rm t0}} \Delta P - \frac{x_{\rm f} \sin \delta_0}{E_0 U_{\rm t0}} \Delta Q$$
(16)

$$\Delta U_{t} = (2\cos \delta_{0} - \frac{U_{t0}}{E_{0}})\Delta E + \frac{x_{f}\sin \delta_{0}}{E_{0}}\Delta P - \frac{x_{f}\cos \delta_{0}}{E_{0}}\Delta Q$$
(17)

实际运行时, $\delta = \theta_e - \theta_1$, δ 不超过 10°~20°,所以 可以近似认为 cos $\delta_0 = 1$,式(16)和式(17)可以简化 为如式(18)和式(19)的形式。

$$\Delta \theta_{\rm e} = \Delta \theta_{\rm t} + \frac{x_{\rm f}}{E_0 U_{\rm t0}} \Delta P \tag{18}$$

$$\Delta U_{t} = (2\cos\delta_{0} - \frac{U_{t0}}{E_{0}})\Delta E - \frac{x_{f}\cos\delta_{0}}{E_{0}}\Delta Q \quad (19)$$

式(8)—式(14)中的关系缺少一组表达式,无法闭 环小干扰传递模型,所以需要增加一组额外的约束方 程。利用有功功率与无穷大母线电压之间的关系:

$$P = \frac{EV_{\rm s}\sin(\theta_{\rm e} - \theta_{\rm s})}{x_{\rm f}}$$
(20)

式中, θ , 为无穷大母线的相角。

对式(20)进行线性化可得

$$\Delta \theta_{\rm e} = \frac{x_{\rm f}}{E_0 V_{\rm s0}} \Delta P \tag{21}$$

综合式(18)和式(21),可以得出 θ, 的表达式为

$$\Delta \theta_{t} = K_{\rm p\theta t} \Delta P \tag{22}$$

式中, $K_{p\theta t} = x_f / [E_0(1/V_{s0} - 1/U_{t0})]$ 为有功功率与角 度系数。

对图1所示的模型线性化可得图3。

下面主要分析自动电压控制对阻尼的影响,重 点研究无功功率控制环对阻尼的影响。

图 3 双馈风场系统的小干扰模型

根据图 3 所示,无功功率控制环中阻尼部分的 表达式为

$$T_{\rm EP} = K_{Eq} \Delta E_q^p = K_{Eq} K_{pEq}(s) \Delta P$$
(23)
将式(18)代入式(23)中,可得

$$T_{\rm EP} = \frac{E_0 U_{10}}{x_{\rm f}} K_{Eq} K_{pEq}(s) \Delta \delta$$
 (24)

将式(10)和式(11)带入式(24)中,可得

$$T_{\rm EP} = K_{Eq} \frac{X_{\rm m} E_0 U_{\rm t0}}{x_{\rm f}} \frac{K_{\rm p\omega} s + K_{\rm I\omega}}{2Hs^2} \Delta \delta \qquad (25)$$

式中: $K_{\mu\nu}$ 为图 1 中有功功率控制环的比例参数; $K_{\mu\nu}$ 为图 1 中有功功率控制环的积分参数。

根据图 2 可以得出 ΔE_d^p 和 $\Delta \delta$ 之间的关系为

$$\Delta E_d^p = \frac{1}{K_{\theta d}} \left\{ 1 - \frac{E_0 U_{t0}}{x_f} \left[K_{pEq}(s) K_{\theta q} + (K_{spt} - 1) K_{p\theta t} \right] \right\} \Delta \delta$$
(26)

根据式(25)和式(26)以及图 2 可以得出 Δ*E* 和 Δδ 之间的关系为

$$\frac{\Delta E}{\Delta \delta} = \frac{K_{Ed}}{K_{\theta d}} \left\{ 1 - \frac{E_0 U_{t0}}{x_f} \left[K_{pEq}(s) K_{\theta q} + (K_{spt} - 1) K_{p\theta t} \right] \right\} + K_{Eq} \frac{X_m E_0 U_{t0}}{x_f} \frac{K_{p\omega} s + K_{I\omega}}{2Hs^2}$$

$$(27)$$

实际中 ΔE 无法直接观测到,选取风电并网 点电压作为阻尼观测量,需要研究 ΔU_1 和 $\Delta \delta$ 之间的 关系。

根据图2可得

$$\Delta Q = \frac{1}{I_Q} \left[\frac{1}{X_m G_{\text{PIV}}(s)} \Delta E_d^p + \Delta U_\tau \right]$$
(28)

将式(28)代入式(19)中,可得

$$\Delta U_{t} = \frac{E_{0}I_{Q}X_{m}G_{PIV}(s)}{E_{0}I_{Q}X_{m}G_{PIV}(s) + x_{f}}(2 - \frac{U_{t0}}{E_{0}})\Delta E - \frac{1}{E_{0}I_{Q}X_{m}G_{PIV}(s) + x_{f}}\Delta E_{d}^{p}$$
(29)

将式(27)和式(26)带入式(29)中, ΔU₁和 Δδ 之间的关系为

$$\Delta U_{t} = \frac{I_{Q}E_{0}X_{m}G_{PIV}(s)}{I_{Q}E_{0}X_{m}G_{PIV}(s) + x_{f}} \left\{ (2 - \frac{U_{t0}}{E_{0}}) \left\{ \frac{K_{Ed}}{K_{\theta d}} \cdot \left[1 - \frac{E_{0}U_{t0}}{x_{f}} \left[K_{pEq}(s)K_{\theta q} + (K_{spt} - 1)K_{p\theta t} \right] \right] + K_{Eq} \frac{X_{m}E_{0}U_{t0}}{x_{f}} \frac{K_{p\omega}s + K_{I\omega}}{2Hs^{2}} \right\} - \frac{x_{f}}{E_{0}I_{Q}X_{m}G_{PIV}(s)} \frac{1}{K_{\theta d}} \cdot \left\{ 1 - \frac{E_{0}U_{t0}}{x_{f}} \left[K_{pEq}(s)K_{\theta q} + (K_{spt} - 1)K_{p\theta t} \right] \right\} \right\} \Delta\delta$$

$$(30)$$

从式(30)可以看出, ΔU ,和 Δδ之间的阻尼关系 主要受两部分因素影响:1)有功功率控制环动态参 数的影响;2)无功功率控制环参数的影响。

2 含自动电压控制的阻尼模型

双馈风场系统的 AVC 系统由主站和子站组成, 主站一般由调度中心控制,负责下发 AVC 指令,子 站由场站组成,负责接收指令,完成电压调节过程, 对应结构如图 4 所示。双馈风场子站收到电压调整 命令后,按照预定的策略将无功分配给双馈风机和 静止无功发生器,进而达到电压调整的目标。

双馈风场的自动电压控制在动态环节和传统同 步机组一样,但在信号传输方式上有重要区别。传 统同步机组的电压是通过电压互感器直接采集和处 理的,所以传统同步机控制的延迟很小。而双馈风 场的电压信号并不是通过电压互感器直接采集的, 而是通过通信接口装置转化为 IEC104 规约发送给 双馈风场的自动电压控制系统;当双馈风场的自动 电压控制系统收到 IEC104 规约发送的电压信号后, 计算出对应的控制指令,再通过 IEC104 传送给执行 单元,即无功补偿装置和逆变器。双馈风场自动电 压控制在控制电压过程中,IEC104 传输信号过程会 产生数秒至数十秒的延迟,对双馈风场的电压稳定 产生了不利影响。

实际中双馈风场的电压控制系统大多有逆变器 参与,还有静止无功发生器,两者的无功功率分配通 过自动电压控制系统计算得出,对应的控制模型如 图5所示。并网点电压通过偏差计算环节,将电压 偏差转化为无功功率需求值, G_{ave}(s) 为自动电压控 制中延迟以及放大倍数的集合体; 然后, 通过无功功 率分配模式将无功功率分配给静止无功发生器 (static var generator, SVG) 和逆变器, 得到无功功率 分配指令后, SVG 和逆变器通过对应的无功功率 控制环得出对应的无功电流; 最后, 再对无功电流 做求和运算, 即可得出对应的 q 轴无功电流的指令 值。m_{svg}为 SVG 的无功分配系数; m_{DFIC} 为双馈风场 的无功功率分配系数。

图 4 双馈风场系统的自动电压控制流程

图 5 自动电压控制模型

根据图 5 对自动电压控制模型进行线性化可得

 $\Delta Q = m_{DFIG} G_{ave}(s) \Delta U_{t}$ (31) 式中, $G_{ave}(s) = e^{s\tau} K_{s}, \tau$ 为延迟时间常数, K_{s} 为无功 电压转化系数。 τ 主要考虑电压信号在图 4 传输过 程中的延迟。

根据式(31)和图 2 可以得出含自动电压控制的双馈风场阻尼小干扰模型,如图 6 所示。

考虑自动电压模型后,式(28)的表达式变化为

$$\Delta Q = \frac{1}{I_{\rm Q}} \left(\frac{1}{X_{\rm m} G_{\rm PIV}(s)} \Delta E_d^p + \Delta U_{\rm t} \right)$$
(32)

将式(31)代入式(32)中,可得

$$\Delta U_{t} = \frac{I_{Q}m_{\text{DFIG}}G_{\text{avc}}(s) - 1}{X_{m}G_{\text{PIV}}(s)}\Delta E_{d}^{p}$$
(33)

将式(26)代入式(33)可得

$$\Delta U_{t} = \frac{I_{Q}m_{\text{DFIG}}G_{\text{avc}}(s) - 1}{K_{\theta d}X_{\text{m}}G_{\text{PIV}}(s)}$$

$$\left\{1 - \frac{E_{0}U_{t0}}{x_{\text{f}}}\left[K_{\text{pEq}}(s)K_{\theta q} + (K_{\text{spt}} - 1)K_{\text{p}\theta t}\right]\right\}\Delta\delta$$

图 6 考虑自动电压控制的风电阻尼模型

从式(34)可以看出,电压增量和功角之间的传 递函数不仅受到有功功率控制环和无功功率控制环 的影响,且自动电压控制环的参数对传递函数产生 明显的影响。

令 *s* = jω,ω 为振荡角频率,并代入至式(34) 中,将式(34)中的实部和虚部进行分离,可得阻尼 转矩的表达式。

$$\operatorname{Re}\left(\frac{\Delta U_{t}}{\Delta \delta}\right) = \operatorname{Re}\left\{\frac{I_{Q}m_{\mathrm{DFIG}}G_{\mathrm{avc}}(j\omega) - 1}{K_{\theta d}X_{\mathrm{m}}G_{\mathrm{PIV}}(j\omega)}\right\}$$

$$\left\{1 - \frac{E_{0}U_{t0}}{x_{\mathrm{f}}}\left[K_{\mathrm{p}Eq}(j\omega)K_{\theta q} + (K_{\mathrm{spt}} - 1)K_{\mathrm{p}\theta \mathrm{t}}\right]\right\}$$

$$(35)$$

3 双馈风场的阻尼稳定性分析

为进一步分析双馈风场的阻尼稳定性,选取 99 MW 的双馈风场为例,配套 SVG 的容量为 20 MVar,基于 以上参数建立双馈风场的幅相动力学模型,并对自 动电压控制中的主要参数和运行方式变化下的阻尼 变化规律进行量化分析。

基准功率为 99 MW,基准电压为 690 V,基准 频率为 50 Hz,直流侧基准电压为 690 V, $x_{\rm f}$ =0.1 pu, $x_{\rm g}$ = 0.5 pu, $x_{\rm m}$ =0.24 pu;自动电压电压控制环参 数 $k_{\rm pl}$ =3.5, $k_{\rm il}$ =140, $K_{\rm s}$ =10;机端电压参数 $k_{\rm p2}$ =1, $k_{\rm i2}$ =100;电流控制环参数 $k_{\rm p3}$ = 0.3, $k_{\rm i3}$ = 160;锁相 环参数 $k_{\rm p4}$ = 50, $k_{\rm i4}$ = 2000。

(34)

3.1 运行方式对双馈风场阻尼稳定性的影响

设置不同的运行方式,计算不同运行方式下的阻尼转矩。选取3个运行点,运行点分别是:*P* = 0.98 pu,*Q* = 0 pu;*P* = 0.98 pu,*Q* = -0.3 pu;*P* = 0.98 pu,*Q* = 0.3 pu。根据式(2)计算出3个运行点下机端电压的阻尼转矩,对应的变化趋势如图7所示。

图 7 不同工况下的阻尼转矩变化趋势

从图 7 可以看出,阻尼转矩系数随着频率的增大 在不断减小。这说明在低频振荡的范围(0.2~2.5 Hz) 内,双馈风场系统基本上还是提供正阻尼。运行方 式的变化整体上对阻尼转矩影响有限,在有功功率 不变的条件下,风场无功功率从滞相变化至进相状 态后,阻尼在不断减弱,和同步发电机在不同运行方 式下的阻尼变化规律类似。

为研究自动电压控制系统对双馈风场阻尼的影响,将延迟时间设置为2s,利用和图7中相同的运行点,并根据式(35)计算不同运行方式下的阻尼转 矩变化趋势,如图8所示。

图 8 考虑延迟的阻尼转矩变化趋势

从图 8 中可以看出, 与图 7 中的阻尼变化规律 相比,随着频率的增大, 阻尼系数呈现振荡变化的趋势, 在频率等于 0.28 Hz 处, 阻尼系数达到最大值。 频率大于 0.28 Hz 后, 阻尼系数振荡衰减降至稳态 值。在无功功率不变的条件下,随着风机从滞相到 进相变化的过程中,阻尼转矩逐渐变弱,与不考虑延 迟时变化趋势一致。在考虑延迟环节后,阻尼转矩 基本上都呈现周期振荡变化的趋势,振荡周期在2s 左右,主要原因是延迟指数函数在进行欧拉公式展 开后,产生一种以延迟时间为周期的正弦函数,对系 统阻尼产生明显的振荡特性。

3.2 延迟对双馈风场阻尼稳定性的影响

为模拟延迟效应对双馈风场系统阻尼转矩的 影响,设置双馈风场在恒定的功率点 P=0.98 pu, Q=0 pu 时的运行特性。分别将延迟设置为 2 s、5 s、 10 s,对应的阻尼转矩变化趋势如图 9 所示。

从图9可以看出:不同延迟时间下系统阻尼变 化趋势差异明显,呈现出先振荡上升后连续衰减下 降的变化趋势,最终3条曲线收敛至接近的稳态值; 延迟时间常数对振荡频率的影响最为明显,随着延 迟时间的加大,振荡频率不断增大;延迟时间对振荡 幅值影响不大,不同延迟时间下的阻尼振幅包络线 基本一致。

3.3 系统强度对双馈风场系统阻尼稳定性影响分析

实际双馈风场接入电网后,系统强度对稳定性的影响不可忽视。为研究系统强度对阻尼系数的影响,通过调整参数 x_s来改变电网系统强度,根据式(35)计算对应的阻尼转矩系数,并比较不同系统强度下阻尼系数的变化趋势。

从图 10 可以看出,在不同系统强度下,阻尼转 矩变化趋势差异很大:在系统强度较弱时,阻尼转矩 随着频率增大逐渐变小;而在较强的系统强度下,阻 尼转矩在 2 Hz 时阻尼变为最弱,随后阻尼转矩又缓 慢变强。

3.4 控制模式对双馈风场阻尼稳定性影响分析

双馈风场的无功功率分配模式主要有 3 种: 1)风机优先;2)SVG 优先;3)风机和 SVG 均半策 略。通过调整参数 m_{pv}来表示不同无功功率分配模 式,根据式(35)计算对应的阻尼转矩系数,并比较 不同无功功率分配模式下阻尼系数的变化趋势。 图 11 为不同控制模式下阻尼转矩变化趋势图。

从图 11 可以看出,风机优先与风机和 SVG 均 半模式阻尼都表现出阻尼振荡的特征,说明振荡模 式主要与风机无功功率分配模式相关。

4 时域仿真验证

为进一步验证自动电压对双馈风场稳定性的影响,在仿真平台上搭建如图1所示的双馈风场模型, 并通过时域仿真的方式验证电网自动电压控制的 加入对双馈风场系统稳定性的影响,系统的参数和 第3章介绍的一致。

4.1 阻尼对系统稳定性影响仿真

为研究延迟环节对系统稳定的影响,保持其他参数不变,延迟环节的值设置为2s,在0.300~0.314s 设置系统母线电压上升至1.1 pu,双馈风场的电压 U,输出如图12所示。

由图 12 可知,在外部电压扰动的情况下,双馈 风场电压振荡频率大约在 1.7 Hz 左右,电压逐渐发 散振荡状态,但发散速度较慢。根据图 8 分析的结 果,在频率处于 1.7 Hz 处,电压 U₁呈现弱阻尼特性, 说明频域分析结果和时域结果基本一致。

图 12 延迟作用的电压变化趋势

4.2 系统强度对系统稳定性影响仿真

为研究系统强度对系统稳定的影响,保持其他 参数不变,系统强度 x_s分别设置为 0.26 pu 和 0.24 pu, 在 0.300~0.314 s 设置系统母线电压上升至 1.1 pu, 双馈风场的电压 U_t输出如图 13 所示。

图 13 不同系统强度下的电压变化趋势

由图 13 可知, x_s =0.26 pu 代表的弱系统在外部 扰动的情况下振荡发散程度大于 x_s =0.24 pu 的较 强系统,说明系统强度减弱后,机端电压振荡后阻尼 变弱。

根据图 13 分析的结果,电压 U₁的振荡频率为 1.7 Hz。根据图 10 分析,在 1.7 Hz 处阻尼处于较弱 状态,而系统越弱,电压 U₁的阻尼效果越差,理论仿 真与图 9 的频域分析结果较为一致。

5 结 论

上面研究了自动电压控制对双馈风场小干扰稳 定的影响,得出的主要结论如下:

1)考虑自动电压控制的延迟后,电压的阻尼呈 现出振荡特性,且振荡频率与延迟时间有一定关系。 延迟对电压阻尼作用增强还是削弱,取决于频域在 振荡频率点的摆动方向。若阻尼对系统稳定造成较 大影响,需要振荡频率点恰好处于延迟的摆动效应 差别到最大点,出现该种情况概率相对较低。

2) 双馈风场接入的系统强度对稳定影响最为

明显,能够改变阻尼的变化趋势,较弱系统在高频趋势后,电压阻尼变为负阻尼。而在强系统下,电压阻 尼始终为正,说明较强的系统有利于维持全频段的 电压阻尼稳定。

3)时域仿真结果表明,所建立的含自动电压控 制系统的双馈风场系统小信号模型能够准确地反映 系统的阻尼变化趋势,对于含自动电压控制系统的 双馈风场并网系统的控制参数设计和振荡抑制具有 理论指导作用,同时可为改进自动电压控制的稳定 性提供依据。

参考文献

- [1] 王方洲,谭甜源,刘开培,等.可变速抽蓄机组与直驱风 电机组联合运行系统的小信号稳定分析[J].电力自动 化设备,2021,41(7):65-72.
- [2] 张炎,丁明,韩平平,等.直流闭锁后风电送端系统 暂态稳定及控制策略研究[J].电工技术学报,2020, 35(17):3714-3726.
- [3] 于永军,王利超,张明远,等.基于阻抗特性多项式拟合的直驱风电机组次同步振荡稳定判据[J].发电技术, 2020,41(4):429-436.
- [4] 邵宝珠,张文朝,李家廷,等.基于短路容量的大规模风 电弱送端直流工程电压稳定快速评估方法[J].可再生 能源,2018,36(7):1062-1066.
- [5] 潘雄,张龙,黄家栋,等.基于 Sobol 序列和混合 Copula 的含风电和光伏电力系统暂态稳定分析[J].太阳能学 报,2015,36(7):1622-1631.
- [6] BAA WAFAA M, DESSAINT A. Approach to dynamic voltage stability analysis for DFIG wind parks integration[J].
 IET Renewable Power Generation, 2018, 12(2): 190–197.
- [7] ADETOKUN Bukola Babatunde, MURIITHI Christopher Maina. Impact of integrating large-scale DFIG-based wind energyconversion system on the voltage stability of weak national grids: a case study of the Nigerian power grid[J]. Energy Reports, 2021, 7: 654-666.
- [8] QIN Boyu, LI Hengyi, ZHANG Xuexin, et al. Quantitative short-term voltage stability analysis of power systems integrated with DFIG-based wind farms[J]. IET Generation, Transmission & Distribution, 2020,14(19): 4264-4272.
- [9] SHI J, TANG Y J, REN L, et al. Application of SMES in wind farm to improve voltage stability [J]. Physica C: Superconductivity ond Its Appliactions, 2008, 468 (15): 2100-2103.
- [10] LATHA K Sree, KUMAR M Vijaya. STATCOM for enhancement of voltage stability of a DFIG driven

wind turbine [C]. 2014 Power and Energy Systems: Towards Sustainable Energy, IEEE, 2014:1-5.

- [11] CHI Yongning, LIU Yanhua, WANG Weisheng, et al. Voltage stability analysis of wind farm integration into transmission network [C]. 2006 International Conference on Power System Technology, IEEE, 2006.
- [12] NAIMUL Hasan, FAROOQ Shuaib, IBRAHEEM. Dynamic performance analysis of DFIG based wind farm with STATCOM and SVC[J]. International Journal of Emerging Technology and Advanced Engineering, 2012, 2(7):461-469.
- [13] 王彬,郭庆来,孙宏斌,等.交流特高压近区电网自动电压控制研究与实践[J].电力系统自动化, 2013, 37(21):99-105.
- [14] CHEN Huifen, QIAO Ying, LU Zongxiang. Study on coordinated voltage control strategy of DFIG wind farm [C].2012 IEEE Power and Energy Society General Meeting, IEEE, 2012.
- [15] ZHAO Y N, LIU Q H, SONG S Y, et al. An improved AVC strategy applied in distributed wind power system[J].IOP Conference Series: Earth and Environmental Science, 2016, 40:012064.
- [16] 于汀,蒲天骄,刘广一,等.含大规模风电的电网 AVC 研究与应用[J].电力自动化设备,2015,35(10):81-86.
- [17] LI Chunyan, LI Qing, ZHANG Jinping, et al.Study on the impact of communication network on reactive power control in wind farm[C].8th Renewable Power Generation Conference (RPG 2019), IET, 2019.
- [18] YUAN H, YUAN X M, HU J B. Modeling of gridconnected VSCs for power system small-signal stability analysis in DC-link voltage control timescale[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3981-3991.
- [19] 唐王倩云,张睿,胡家兵.用于系统暂态行为分析的双 馈风机转子转速控制时间尺度暂态模型[J].中国电 机工程学报,2021,41(9):3037-3046.
- [20] TANG W Q Y , HU J B , CHANG Y Z , et al. Modeling of DFIG-based WT for system transient response analysis in rotor speed control time-scale [J]. IEEE Transactions on Power Systems, 2018,33(6):6795-6805.

作者简介:

朱建华(1986),男,硕士,高级工程师,研究方向为电力 系统稳定与分析;

朱力维(1992),男,工程师,从事电力系统运行和维护;

周 勇(1987),男,硕士,高级工程师,从事电力设备在 线监测与故障诊断工作。

(收稿日期:2024-01-22)