基于最优决策树的多能系统快速鲁棒优化调度

彭浩晋¹,邱 高¹,税 月²

(1.四川大学电气工程学院,四川成都 610065;2.国网四川省电力公司技能培训中心,

四川 成都 611133)

摘 要:新能源渗透率的持续增长造成了多能系统快速协调调度的巨大挑战,包括调度结果过于保守以及日内调度 低效等问题。为此,提出了一种基于最优决策树分布式鲁棒优化的多能系统协调快速调度方法,所构建模型考虑电 网日内经济调度,引入基于范数约束的概率分布置信集精准描述新能源的不确定性,防止调度结果过于保守。同时, 根据新能源日内运行数据,分别通过可解释的最优分类树和最优回归树算法,优化日内机组启停状态和出力水平的 初始决策量,解决日内鲁棒调度的低效问题。在四川某地区电网的验证结果表明,该模型可在兼顾调度成本和鲁棒 性的同时,实现水风光多能系统的日内快速协调调度。

关键词:分布鲁棒优化;多能互补调度;数据驱动技术;最优决策树 中图分类号:TM 732 文献标志码:A 文章编号:1003-6954(2023)06-0021-07 DOI:10.16527/j.issn.1003-6954.20230604

Fast Robust Optimal Dispatch of Multi-energy System Based on Optimal Decision Tree

PENG Haojin¹, QIU Gao¹, SHUI Yue²

(1. College of Electrical Engineering, Sichuan University, Chengdu 610065, Sichuan, China; 2. State Grid Sichuan Technical Training Center, Chengdu 611133, Sichuan, China)

Abstract: The increasing penetration of new energy has caused challenges to the fast coordinated dispatch of multi-energy systems, including overly conservative operation and low-efficient intraday dispatch. For this purpose, a fast and coordinated dispatch method for multi-energy systems based on optimal decision tree-based distributed robust optimization (ODT-DRO) is proposed. Considering the intraday economic dispatch of power grid, and in order to prevent the result from being too conservative, the proposed model introduces probability distribution confidence set based on norm constraint, which precisely discribes the uncertainties of new energy. At the same time, according to the intraday operation data of new energy, the interpretable optimal classification tree and optimal regression tree algorithms are used to optimize the initial intraday decisions of the status and output level of the units, thus solving the inefficiency problem in intraday rubust dispatch. Testing results of a power grid in Sichuan show that the proposed method can balance the operational costs and the robustness, and meanwhile achieve the fast coordinated intraday dispatch for multi-energy system.

Key words: distributionally robust optimization; multi-energy coordinated dispatch; data-driven technology; optimal decision tree

0 引 言

对于包括风能、太阳能、水力资源和其他可再生 能源的具有多维不确定性的互补发电系统的协调调 度^[1-3],通常采用随机优化^[4]和鲁棒优化^[5]方法进 行建模和处理。 随机优化可以用于具有多不确定性的可再生能 源发电调度过程的定量分析,但由于对混合可再生 电力系统中不确定性概率分布规律进行精确描述十 分困难^[6],随机优化需要预先设置概率分布类 型^[7],这在一定程度上降低了其可靠性。除此之 外,随机优化基于大量离散场景,将使计算规模过 大,从而导致更长的消耗时间和较低的计算效 率^[8]。尽管离散场景的场景约简技术^[9]和 Benders 分解加速方法^[10]可以减少计算规模,但这些方法不 能覆盖所有实际场景,并且所获得场景的代表性和典 型性值得怀疑,那么解的准确性也会降低。

相较而言,鲁棒优化不需要预先设置随机变量 的概率分布^[11-13],它通过不确定变量的边界参数来 描述随机变化特征^[14],只要变量值在边界内,就可 以从鲁棒优化模型中获得可行的解。与随机优化相 比,鲁棒优化可以为边界内任意取值的不确定变量 获得可行解^[15],并能严格保证决策的可靠性,同时 计算规模大大缩小,数据需求也减少。但由于鲁棒 优化是基于最坏的情况来搜索最优值^[16-17],因此鲁 棒优化存在优化结果过分保守的缺点,这将导致在 水风光多能互补调度中不能充分利用资源。

针对随机优化、鲁棒优化在处理水电、风能和太 阳能等可再生能源的不确定性特征过程中存在的问 题,相关研究人员尝试将随机优化和鲁棒优化结合 起来,使其优势互补并避免两种方法的缺点。此外, 随着测量技术的不断改进,电力系统产生了大量的 多类型生产数据。在此背景下,数据驱动的分布式 鲁棒优化(distributionally robust optimization, DRO) 应运而生,这为解决随机优化模型的低精度和鲁棒 优化模型的保守性提供了新的途径^[18]。目前,DRO 技术已初步应用于电力系统的机组组合[19]、多能互 补调度^[20]等,也有相关研究简化了 DRO 的复杂计 算过程^[14]。与随机优化和鲁棒优化相比, DRO 不 需要获得变量的精确概率分布,只需要构建一个覆 盖真实分布的不确定集,并在最坏分布下进行决策, 从而避免了变量的复杂概率分布难以获得的难题。 此外,通过采用线性决策规则、拉格朗日对偶处 理^[21]等技术,可以将 DRO 问题转化为确定性优化 问题,以避免随机优化方法的大采样规模和低计算 效率问题。DRO 的显著优点是它覆盖了不确定参 数的概率统计信息,并可以提高决策的保守性。 DRO 不仅结合了随机优化的概率统计特性,还借鉴 了鲁棒优化的思想,其决策结果具有抗风险性能,在 处理电力系统的不确定性特征方面具有独特的显著 优势[16]。

鉴于数据驱动 DRO 在不确定经济调度、低碳调 度和机组组合领域的独特优势,下面提出了一种基 于最优决策树的 DRO 的梯级水电与风/光新能源电 站联合系统协调优化调度方法(two-stage distributed robustness based on optimal decision tree,ODT-DRO)。 该方法首先建立了数据驱动的两阶段 DRO 调度模 型,第一阶段考虑系统的互补经济调度成本,第二阶 段考虑系统实时调整能力,并引入范数约束来限制 风电与太阳能的不确定输出的概率分布置信集,以 寻求最差分布情况的最优解。同时,通过嵌入基于 优化理论的可解释的最优决策树算法^[22-24]实现机 组状态和出力水平的日内快速决策,实现模型热启 动有效提升日内决策效率。

1 基于数据驱动的两阶段 DRO 水风 光互补协调调度模型

1.1 模型目标函数

基于数据驱动的两阶段分布鲁棒优化水风光互 补协调调度模型包含两个阶段,第一阶段为机组组 合模型,第二阶段为实时调整模型。模型目标函数 如式(1)所示。

 $\min \{ C^{uc} + \max \{ p_k \} \left[\sum_{k=1}^{h} p_k \cdot \min(C^{re}) \right] \} (1)$ 式中: p_k 为第 k 个离散场景的概率; K 为离散场量总数; C^{uc} 与 C^{re} 分别为机组运行成本和实时调整成本。

可以看出,式(1)是一个 min-max-min 三层的两 阶段鲁棒优化问题,与仅针对最坏情况进行优化的 传统两阶段鲁棒优化相比,该模型的内部 max、min 函数通过优化决策变量来计算 *K* 个离散情况的最 坏概率分布,并获得最大期望成本值。*C*^{uc}与 *C*^m分 别由式(2)和式(3)计算得到。

$$C^{\rm uc} = \sum_{t=1}^{T} \left(C_t^{\rm buy} + C_t^{\rm H} + C_t^{\rm IIG} \right)$$
(2)

式中, C_t^{buy} 、 C_t^{H} 和 C_t^{IIC} 分别为t时段购电成本、梯级 水电系统和风/光发电站的运行成本。

$$C^{\rm re} = \sum_{t=1}^{T} \left(C_t^{\rm buy_re} + C_t^{\rm H_re} + C_t^{\rm IIG_re} \right)$$
(3)

式中, $C_{t}^{\text{buy-re}}$ 、 $C_{t}^{\text{H-re}}$ 和 $C_{t}^{\text{IIG-re}}$ 分别为t时段购电调整成本、梯级水电站和风/光电站运行调整成本。

1.2 考虑经济调度和综合范数的约束条件

模型的约束主要分为3种类型:常规运行约束、

实时经济调整约束和数据驱动的综合范数约束。基 于梯级水电系统和风/光系统的预测信息形成的运 行约束主要包括功率平衡约束、水量平衡约束、机组 运行约束、电网约束^[25]和备用约束等。由于实时阶 段的不确定性,需要调整梯级水电的输出,以平衡风 光出力的随机波动。因此引入实时调整约束,如 式(4)—式(12)所示,分别表示实时调整阶段的 源-荷平衡约束、水库蓄水量变化约束、梯级水电有 功输出约束、排放流量约束、水量平衡约束、级间液 压连接约束、水轮机爬坡率约束、风力/光伏电站的 有功约束以及网络约束。

$$\sum_{n=1}^{N^{\text{busy}}} (P_{n,t} + \Delta P_{n,t,k}) + \sum_{i=1}^{N^{\text{H}}} (P_{i,t}^{\text{H}} + \Delta P_{i,t,k}^{\text{H}}) + \sum_{i=1}^{N^{\text{IIG}}} (P_{j,t}^{\text{IIG}} + \Delta P_{j,t,k}^{\text{IIG}}) = \sum_{m=1}^{N^{\text{L}}} P_{m,t}^{\text{L}}$$
(4)

$$V_{i}^{\min} \leq (V_{i,i} + \Delta V_{i,i,k}) \leq V_{i}^{\max}$$

$$(5)$$

$$P^{\text{Hmin}} \leq (P^{\text{H}} + \Delta P^{\text{H}}) \leq P^{\text{H0}} \tag{6}$$

$$Q_i^{\text{Hmin}} \leq (Q_{i,t}^{\text{H}} + \Delta Q_{i,t,k}^{\text{H}}) \leq Q_i^{\text{Hmax}}$$
(7)

$$V_{i,t+1} + \Delta V_{i,t+1,k} = V_{i,t} + \Delta V_{i,t,k} + (I_{i,t} + \Delta I_{i,t,k} - Q_{i,t}^{H} - \Delta Q_{i,t,k}^{H}) \Delta t = V_{i,t} + \Delta V_{i,t,k} + (I_{i,t} + \Delta I_{i,t,k} - Q_{i,t}^{C} - \Delta Q_{i,t,k}^{C} - Q_{i,t,k}^{C}) \Delta t$$

$$(8)$$

$$I_{i+1,t+\tau} + \Delta I_{i+1,t+\tau,k} = Q_{i,t}^{H} + \Delta Q_{i,t,k}^{H} + L_{i,t} + \Delta L_{i,t,k}$$
(9)

$$\delta^{\mathrm{L}}\Delta t \leq (P_{i,t+1}^{\mathrm{H}} + \Delta P_{i,t+1,k}^{\mathrm{H}} - P_{i,t}^{\mathrm{H}} - \Delta P_{i,t,k}^{\mathrm{H}}) \leq \delta^{\mathrm{U}}\Delta t$$
(10)

$$0 \leq (P_{i,\iota}^{\mathrm{IIG}} + \Delta P_{i,\iota,\iota}^{\mathrm{IIG}}) \leq P_{i,\iota}^{\mathrm{IIG0}}$$
(11)

$$\begin{cases} P_{\text{tline}} = \boldsymbol{B}_{\text{diag}} \boldsymbol{L} \boldsymbol{B}^{-1} [(P_t + \Delta P_{t,k}) + (P_t^{\text{H}} + \Delta P_{t,k}^{\text{H}}) + P_{t,k}^{\text{IIG}}] \\ - \bar{P}_{\text{line}} \leqslant P_{t\text{line}} \leqslant \bar{P}_{\text{line}} \\ \boldsymbol{B}_{\text{diag}} = \text{diag} \left(\frac{1}{x_1}, \frac{1}{x_2}, \cdots, \frac{1}{x_N} \right) \end{cases}$$

(12)

式中: N^{huy} 、 N^{H} 、 N^{HC} 、 N^{L} 分别为购电时期总期数、梯 级水电机组总数、新能源机组总数和负荷总数; $P_{n,t}$ 、 $\Delta P_{n,t,k}$ 分别为n购电期t时段的购电功率和场景k中实时购电调整功率; $P_{i,t}^{\text{H}}$ 、 $\Delta P_{i,t,k}^{\text{H}}$ 分别为i水电机组 t时段有功出力和场景k中实时调整功率; $P_{j,t}^{\text{HC}}$ 、 $\Delta P_{j,t,k}^{\text{HC}}$ 分别为j新能源机组t时段有功功率和场景k中实时调整功率; $P_{m,t}^{\text{L}}$ 为系统m负荷t时段有功需 求; $V_{i,\iota}$, $\Delta V_{i,\iota,k}$ 分别为*i*水电机组*t*时段水库水量和 场景 k 中水库水量的实时调整量; V^{min}、V^{max} 分别为 i 水电机组水库水量的最小值和最大值: P_{i}^{Hmin} 、 P_{i}^{H0} 分 别为 i 水电机组 t 时段最小允许出力和当前最大出 力能力; $Q_{i,\iota}^{H}$ 、 $\Delta Q_{i,\iota,k}^{H}$ 分别为 i 水电机组 t 时段水库的 排水量和场景 k 中实施调整的排水量; Q_i^{Hmin} 、 Q_i^{Hmax} 分别为i水电机组水库最小和最大排水量。Iii $Q_{i,i}^{G}$ 、 $Q_{i,i}^{C}$ 分别为i水电机组水库的流入量、发电流量 和排放量; $\Delta I_{i,t,k}$ 、 $\Delta Q_{i,t,k}^{c}$ 、 $\Delta Q_{i,t,k}^{c}$ 分别为 *i* 水电机组 *t* 时段场景 k 流入量、发电流量和排放量的实时调整 量; $I_{i+1,t+\tau}$ 、 $\Delta I_{i+1,t+\tau,k}$ 分别为 i 水电机组下级水库 t+ τ 期间流入量和场景 k 流入调整量; $L_{i,i}$ 、 $\Delta L_{i,i,k}$ 分别为 i水电机组 t 时段流量延迟量和场景 k 延迟调整量; δ^{L} 、 δ^{U} 分别为梯级水电机组爬坡能力上、下限; $P_{i,i}^{IIGO}$ 为j新能源机组t时段的出力预测值;B、L分别为导 纳矩阵和节点连接矩阵; P_{line} 分别为支路 t 时 段的直流功率和最大支路功率;x_l为第 l 个支路的 支路阻抗。

由于传统的求解方法对于求解上述 DRO 优化 调度模型来说过于复杂,引入了一种基于 1-范数和 ∞-范数的数据驱动的 DRO 算法来求解模型。首 先,该算法以水力径流和风力/光伏强度等不确定参 数的历史数据为参考,通过提取有限典型日的水力 和风力/光伏历史数据,筛选 K 个离散场景的水力 和风/光发电量以及每个场景的初始概率;然后,以 每个初始概率分布为中心,引入综合范数约束来计 算该联合优化问题,从而获得每个离散场景的最坏 概率分布,并获得该场景下的最大期望目标值。因 此,在数据驱动的两阶段 DRO 协调调度模型中,除 了常规运行调度约束和实时调度约束外,还需要考 虑综合范数约束。

由 1-范数和∞-范数对水风光随机输出的离散 场景施加了约束, Ω为综合范数的可行域,可用 式(13)表示。

$$\Omega = \{p_k\} \begin{vmatrix} p_k \ge 0, \ k = 1, 2, \cdots, K \\ \sum_{k=1}^{K} p_k = 1 \\ \sum_{k=1}^{K} |p_k - p_k^0| \le \theta_1 \\ \max_{1 \le k \le K} |p_k - p_k^0| \le \theta_{\infty} \end{aligned} (13)$$

式中: p_k 为优化过程中第 k 个离散场景的概率; p_k^0 为离散场景 k 的初始概率值; $\sum_{k=1}^{K} |p_k - p_k^0| \le \theta_1$ 和 max $|s_k \le K| |p_k - p_k^0| \le \theta_\infty$ 分别为 1-范数约束和∞ -范数约 束, θ_1 、 θ_∞ 分别为对应约束下离散情景概率的允许 偏差极限。其中置信系数{ p_k }根据文献[26-27]可 以描述为:

$$\begin{cases} \Pr\left\{\sum_{k=1}^{K} |p_{k} - p_{k}^{0}| \leq \theta_{1}\right\} \geq \alpha_{1} \\ \Pr\left\{\max_{1 \leq k \leq K} |p_{k} - p_{k}^{0}| \leq \theta_{\infty}\right\} \geq \alpha_{\infty} \end{cases} \\ \begin{cases} \alpha_{1} = 1 - 2Ke^{-\frac{2M\theta_{1}}{K}} \\ \alpha_{\infty} = 1 - 2Ke^{-2M\theta_{\infty}} \end{cases} \end{cases}$$
(15)

式中: α_1 和 α_{∞} 分别为 1-范数和 ∞ -范数约束下离散 场景集的概率分布置信系数;M为选定的有限典型 水风光发电场景日数。根据式(13)和式(14),约束 水风光不确定性输出的允许偏差限值 θ_1 和 θ_{∞} 是可 以获得的,如式(16)所示。

$$\begin{cases} \theta_1 = \frac{K}{2M} \ln \frac{2K}{1 - \alpha_1} \\ \theta_\infty = \frac{1}{2M} \ln \frac{2K}{1 - \alpha_\infty} \end{cases}$$
(16)

2 最优决策树模型

鲁棒优化受初值影响较大。若可将初值设置在 最优解附近,则鲁棒优化的搜索范围将极大减小,从 而可有效提升多能系统的调度效率。下面通过引入 可解释性较强的最优树方法,建立以风、光、荷等实 时量测值为输入、机组出力和机组组合为输出的决 策树映射,实现对鲁棒调度决策变量的实时"热启 动"优化初始化。

决策树模型基于树结构对特征进行拆分,能够 实现数据的分类与回归任务,具有可解释性强的优 点^[28-31]。这里使用混合整数规划(mixed integer programming, MIP)搭建最优决策树模型,相较于经 典的决策树算法(classification and regression tree, CART),最优决策树模型在树的顶部做出的决策也 会影响全局最优解,而不是简单地做出一系列局部 最优决策,避免了对决策树采取修剪和杂质措施。 并且模型为混合整数规划问题,可以通过 MIP 解算 器,如 Gurobi 和 CPLEX 进行求解。

搭建 MIP 的最优决策树可概述为建立分支结 点与叶结点的精细参数化决策规则以及约束条件, 并明确最终优化函数目标,最后通过 MIP 解算器求 解。搭建的最优决策树结构如图 1 所示。

图 1 最优决策树结构

图中,*a* 为分支选择状态变量,且 $a \in \{0,1\}$;*b* 为分支判别变量。分支结点的拆分遵守 $a^Tx < b$,即 在分支结点拆分时满足此约束的样本进入左分支, 不符合的进入右分支,其中x是样本的某一特征属 性进行归一化处理后的值,即 $x \in [0,1]$ 。而对于此 拆分引入以下变量:

$$d_s \leq d_{p(s)}, \quad \forall s \in T_{\rm B}$$
 (17)

$$\sum_{r=1}^{p} a_{rs} = d_s, \quad \forall s \in T_{\rm B}$$
(18)

$$0 \le b_s \le d_s, \quad \forall s \in T_{\rm B} \tag{19}$$

 $a_{rs} \in \{0,1\}, r = 1, ..., p, \forall t \in T_{B}$ (20) 式中: d_{s} 为结点s 的分支指示变量,其取值只有 0 和 1, 表示不可拆分或可拆分;p(s) 为结点s 父结点; T_{B} 为 决策树的分支结点集合;p 为样本包含的特征总数; r 为特征序号; a_{rs} 为二进制变量,用以确保每个结点 只允许对一个变量(即样本属性)进行拆分; b_{s} 为在 分支结点s 上进行拆分的判断阈值条件,作为连续 变量,因为样本特征属性是归一化的结果,所以 b_{s} 取值也在 0 和 1 之间。式(17)表示当分支结点 的父结点不可拆分,那么分支结点也必定不能拆分; 式(18)表示在分支结点上一次只能针对一个属性 进行拆分。

通过上述规则和引入的变量可以能够实现 MIP 的树结构建模,同时还需要建立叶结点的分配规则, 将叶结点与样本类别相匹配。通过引入二进制变量 *z_{ms}*=1来标志有样本 *m* 落入叶结点中,样本总数为 *n*,并引入二进制变量 *l_s*=1 表示叶结点满足最小落 入样本数,最小样本数为 *N_{min}*,并且需要强制每个样 本点只能分配给一个叶结点,因此有如下约束:

$$z_{ms} \leq l_s, \quad s \in T_{\rm L}$$
 (21)

$$\sum_{m=1}^{n} z_{ms} \ge N_{\min} l_s, \quad s \in T_{\mathrm{L}}$$
(22)

$$\sum_{s \in T_{\rm L}} z_{ms} = 1, \quad m = 1, \cdots, n$$
 (23)

式中:*z_{ms}*为叶结点样本指示变量,*z_{ms}*=1 表示样本 *x_m* 落在结点 *s*,以此来跟踪分配给每个叶结点的样本; *l_s*为叶结点最小样本数限制指示变量,与叶结点最小 样本数 *N_{min}构建最小样本数限制*:*T₁*为叶结点集合。

最后在将样本分配给叶结点时需要用强制约束 进行拆分:

$$\boldsymbol{a}_{v}^{\mathrm{T}}(\boldsymbol{x}_{m}+\boldsymbol{\delta}) \leq \boldsymbol{b}_{s}+\boldsymbol{M}_{1}(1-\boldsymbol{z}_{ms}),$$

$$\boldsymbol{m}=1,\cdots,\boldsymbol{n}, \quad \forall s \in T_{\mathrm{B}}, \quad \forall v \in A_{\mathrm{L}}(s) \quad (24)$$

$$\boldsymbol{a}_{v}^{\mathrm{T}}\boldsymbol{x}_{m} \geq \boldsymbol{b}_{s}-\boldsymbol{M}_{2}(1-\boldsymbol{z}_{ms}),$$

m = 1, ..., n, $\forall s \in T_B$, $\forall v \in A_R(s)$ (25) 式中: $M_1 = M_2$ 都为任意大的常数; $A_L(s)$ 为叶结点 的拆分路径上的左分支结点集; $A_R(s)$ 为叶结点的拆 分路径上的右分支集;v为左分支结点或右分支结 点的索引; δ 为引入的小常数,满足 MIP 解算器 的不等式要求。

通过上述模型,需要最小化每个叶结点中误分 类样本的个数 L,,线性化表达为:

$$L_{s} \geq N_{s} - N_{us} - M(1 - c_{us}) ,$$

$$u = 1, \cdots, U, \quad \forall s \in T_{L}$$
(26)

 $L_{s} \leq N_{s} - N_{us} + Mc_{us},$ $u = 1 \cdots U \quad \forall s \in T.$ (1)

$$u = 1, \cdots, U, \quad \forall s \in I_{\mathrm{L}}$$
 (27)

$$L_s \ge 0, \quad \forall s \in T_L$$
 (28)

式中:L_s为误分类损失,其值为叶结点样本总数减 去比例最多标签样本数;N_s为叶结点上总的样本个 数;N_{us}为叶结点上第 u 类样本的个数;通过找到叶 结点中样本数最多的类,确定该类为叶结点所对应 的类别,最小化错误分类样本个数,引入 c_{us}=1 表示 叶结点 s 对应类别为 u;M 为任意大常数,结合 c_{us}的 取值使约束无效。

根据基线精度标准化错误分类,得到模型的优 化目标为

$$\min \frac{1}{\hat{L}} \sum_{s \in T_{\rm L}} L_s + \alpha \sum_{s \in T_{\rm B}} d_s \tag{29}$$

式中,α为复杂性参数,控制树的精度与复杂性。

构建的最优决策树模型为混合整数规划问题, 能够有效嵌入数据驱动的水风光两阶段分布鲁棒模 型中。根据新能源实测数据进行运行方式快速决 策,提供给模型进一步优化,解释性强,可通过 Gurobi 和 CPLEX 等求解器进行求解。

3 ODT-DRO 联合优化调度方法

使用 ODT-DRO 实现水风光多能系统协调调 度。首先,需要通过大量历史新能源出力水平、负荷 水平、发电机出力水平、机组启停状态等数据作为最 优决策树训练数据输入特征,分别得到最优分类决 策树与最优回归决策树;最优分类决策树与最优回 归决策树根据新能源机组出力能力实测数据分别输 出同步发电机组启停状态与出力水平,将同步发电 机启停状态与出力水平传递给两阶段 DRO 水风光 协调调度模型,进一步优化得到日内发电策略,具体 流程如图 2 所示。

图 2 联合优化方法流程

由于最优决策树模型通过离线训练得到,对新 能源实测数据能够快速给出发电机出力和状态的决 策结果,实现对两阶段 DRO 水风光协调调度的加 速,避免由于新能源预测误差对调度结果的不利影 响,实现多能互补系统的日内发电策略快速决策。

4 算例分析

将所提 ODT-DRO 模型在四川 ZD 地区电网的 试验应用,验证所提方法多能互补协调调度可行性。 ZD 地区等值系统如图 3 所示,根据拓扑结构与基础 数据将该系统简化为 29 个母线节点的系统,包含 BT、SWL、KJW、YFG 与 KL 等发电厂。参考攀西新 能源大发运行方式作为基准运行方式,该运行方式

图 3 ZD 地区等值系统

4.1 最优决策树算法分类与回归效果分析

引入最优分类决策树,根据新能源实测数据、负 荷水平以及水电机组实际运行条件对同步机组启停 状态进行决策。最优决策树树结构最大深度为5, 最优分类决策树进行分支的最小样本数为10,最优 回归决策树采用均方差来进行评估。最优决策树算 法在分类准确率达到99.52%且训练样本数据量充 足的情况下,能精确地决策机组启停状态。相比于 经典的 CART 算法,其准确率提升了5.18%,如表1 所示。

表 1	CART 决策树与最优决策树分类准确率
表 1	CART 决策树与最优决策树分类准确率

算法	CART 决策树	最优决策树
准确率/%	94.34	99.52

通过最优回归决策树拟合不同运行环境下同步 机组有功出力,并与 CART 决策树拟合结果进行对 比,如图 4 所示。由图 4 可以看到:CART 算法拟合 后得到的发电机出力曲线与实际曲线存在较大误 差;使用最优决策树进行拟合后得到的发电机出力曲 线与实际曲线贴合度较高,误差较小,拟合效果更好。

图 4 两种决策树算法拟合效果

4.2 模型求解时间

通过最优分类决策树与最优回归决策树得到 同步发电机组启停状态和出力结果。将该结果传递 给两阶段 DRO 水风光协调调度模型作为初始解,实 现热启动,加速模型优化求解速度。相较于没有嵌入最优决策树的模型,所建模型求解时间节省了231.7523 s,如表2所示。

表 2 模型求解时间对比

模型	求解时间/s
DRO 调度模型	755.093 8
ODT-DRO 模型	523.341 5

4.3 新能源机组调度出力偏差分析

在不考虑新能源消纳受阻情况下,以 ZD 地区风 机出力能力为例,对比日前调度与所提 ODT-DRO 模型对新能源机组优化出力与实测数据的偏差,如 图 5 所示。从图 5 可以看到:日前调度通常根据未 来一天新能源预测曲线对未来一天的发电计划进行 优化计算,因此新能源预测误差较大,与实际测得的 新能源出力水平曲线有较大偏差;所提 ODT-DRO 调 度方法根据当前时刻新能源机组出力水平的实测数 据进行决策,时间尺度短,预测误差与调度误差较小。

4.4 ODT-DRO 优化调度结果分析

ODT-DRO 水风光协调调度结果如图 6 所示。 可以看到所提模型能够在四川电网 ZD 地区完成水 风光多能协调互补调度,并且在新能源机组出力水 平较高的时间段(10:00—16:00),降低同步发电机 组出力甚至关停部分机组,为新能源机组让出更多 空间,防止出现新能源消纳受阻的情况,验证了 所提模型在多能互补系统中调度的合理性和可行 性。表3是部分调度结果展示。

表 3	部分调度结果展示	单位:MW

节点	9:00	12:00	13:00	14:00	15:00	16:00	17:00
9	834	834	834	834	834	795	834
10	1500	1500	1114	819	1035	1500	1500
11	765	765	765	765	765	765	765
17	100	40	0	0	0	0	80
19	40	15	0	0	0	0	30

图 6 模型优化调度结果

4.5 模型成本分析

表4比较了所提 ODT-DRO 算法、随机优化算法以及传统鲁棒优化算法的调度成本。ODT-DRO 单位调度成本为 148.721 6 元/MWh,远低于传统鲁 棒优化算法单位平均调度成本,也略低于随机优化算 法的单位平均调度成本。因此,所提出的 ODT-DRO 协调调度方法更具经济性。

模型	单位平均调度成本 /(元・MWh ⁻¹)
ODT-DRO	148.721 6
随机优化	152.476 5
传统鲁棒优化	185.536 2

表 4 模型调度成本对比

5 结 论

为了在包含多清洁能源的系统中实现水风光多能互补调度,并且在防止调度结果过度保守的同时 实现以新能源优先消纳为目标的日内发电策略快速 决策,提出了基于最优决策树的两阶段 DRO 水风光 协调调度模型。该模型考虑实时调整能力以及范数 约束,避免了调度结果的过分保守。同时,嵌入的最 优决策树模型根据新能源实测数据、负荷数据以及实 际运行情况,为两阶段 DRO 提供了同步发电机启停 状态与出力决策,加速两阶段 DRO 求解,实现日内发 电策略快速决策。通过在四川某地区电网的试验验 证了所提模型的有效性,该模型在求解速度、决策精 度、调度成本、安全稳定性以及鲁棒性上都有较好的 表现,能够快速给出可靠的日内调度辅助决策信息。

参考文献

- [1] 王开艳,罗先觉,贾嵘,等.充分发挥多能互补作用的风 蓄水火协调短期优化调度方法[J].电网技术,2020, 44(10):3631-3641.
- [2] 周晓倩, 艾芊, 林琳, 等. 多能互补微电网集群分布式 优化调度[J]. 电网技术, 2019, 43(10): 3678-3686.
- [3] 施烨,金浩,郝飞,等.一种多能互补系统优化调度通用化建模方法[J].电网技术,2022,46(12):4924-4943.
- [4] 印月,刘天琪,何川,等.风-光-水-火多能互补系统 随机优化调度[J].电测与仪表,2020,57(16):51-58.
- [5] 张增强,高明,吕盼,等.基于鲁棒优化理论的输电网 随机优化方法研究[J].电工技术,2019(14):106-110.
- [6] NING C, YOU F Q. Data-driven stochastic robust optimization: General computational framework and algorithm leveraging machine learning for optimization under uncertainty in the big data era[J]. Computers & Chemical Engineering, 2018, 111: 115-133.
- [7] 张沈习,袁加妍,程浩忠,等.主动配电网中考虑需 求侧管理和网络重构的分布式电源规划方法[J].中 国电机工程学报,2016,36(S1):1-9.
- [8] 欧阳金鑫,于莉,蒋航,等.基于多层随机优化的电 网安全稳定控制装置机会检修决策方法[J].电力自动 化设备,2023,43(6):144-151.
- [9] GROWE-KUSKA N, HEITSCH H, ROMISCH W. Scenario reduction and scenario tree construction for power management problems [C]//2003 IEEE Bologna Power Tech Conference Proceedings, IEEE, 2003:1-7.
- [10] 晏鸣宇,张伊宁,艾小猛,等.采用 Benders 分解含 机组禁止运行区间的安全约束最优潮流[J].电力系 统自动化,2018,42(6):60-65.
- [11] ZHONG Z M, FAN N, WU L. Robust optimization for the day-Ahead scheduling of cascaded hydroelectric systems[C]//2022 IEEE Power & Energy Society General Meeting (PESGM), IEEE, 2022: 1-8.
- [12] CHEN Y B, ZHANG Z, CHEN H, et al. Robust UC model based on multi-band uncertainty set considering the temporal correlation of wind/load prediction errors [J].
 IET Generation, Transmission & Distribution, 2020, 14(2); 180-190.

deep reinforcement learning approach [J]. Renewable Energy, 2022, 201: 792-801.

- [20] LI G Q, ZHANG R F, JIANG T, et al. Optimal dispatch strategy for integrated energy systems with CCHP and wind power [J]. Applied Energy, 2017, 192:408-419.
- 王泽森,石岩,唐艳梅,等.考虑 LCA 能源链与碳 [21] 交易机制的综合能源系统低碳经济运行及能效分 析[J]. 中国电机工程学报, 2019, 39(6):1614-1626.

作者简介:

冯文韬(1996),男,硕士,研究方向为新型电力系统:

(上接第27页)

- [13] CHEN Y B, ZHANG Z, LIU Z Y, et al. Robust N-k CCUC modelconsidering the fault outage probability of units and transmission lines [J]. IET Generation, Transmission & Distribution, 2019, 13(17): 3782-3791.
- [14] 周任军, 闵雄帮, 童小娇, 等. 电力环保经济调度矩 不确定分布鲁棒优化方法[J]. 中国电机工程学报, 2015, 35(13): 3248-3256.
- 季峰, 蔡兴国, 王超柱. 基于弱鲁棒优化的含风电 [15] 电力系统调度方法[J].中国电机工程学报, 2016, 36(17): 4600-4609.
- SHANG C, YOU F Q. Distributionally robust optimization [16] for planning and scheduling under uncertainty [J]. Computers & Chemical Engineering, 2018, 110: 53-68.
- [17] 钱峰,白津阳,刘俊磊,等.基于弱鲁棒控制的风电降 载调度模型[J].电气自动化, 2020, 42(4): 11-13.
- 孙泽锋,李渤,王磊.计及风电相关性的电力系统 [18] 数据驱动分布鲁棒优化调度[J].中国测试, 2023, 49(8): 93-103.
- 吉兴全,郝晴,张玉敏,等.分布不确定性条件下的 [19] N-k 分布鲁棒优化机组组合[J]. 电力系统自动化, 2022, 46(2): 56-64.
- 吴孟雪, 房方. 计及风光不确定性的电-热-氢综合 [20] 能源系统分布鲁棒优化[J]. 电工技术学报,2023, 38(13):3473-3485.
- [21] DELAGE E, YE Y. Distributionally robust optimization under moment rncertainty with application to data-driven problems [J]. Operations Research, 2010, 58(3): 595–612.
- [22] BERTSIMAS D, DUNN J. Optimal classification trees [J]. Machine Learning, 2017, 106(7): 1039-1082.
- SUAREZ A, LUTSKO J F. Globally optimal fuzzy decision [23] trees for classification and regression [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(12): 1297-1311.

李龙胜(1976),男,硕士,高级工程师,研究方向为新型 电力系统;

曾 愚(1986),男,硕士,高级工程师,研究方向为新型 电力系统:

潘可佳(1982),男,硕士,高级工程师,研究方向为新型 电力系统;

张子闻(1994),女,硕士,研究方向为电力大数据分析; 景致远(1999),男,硕士,研究方向为电子信息、智能电网。 (收稿日期:2023-06-27)

- [24] BERTSIMAS D, DUNN J, PASCHALIDIS A. Regression and classification using optimal decision trees [C]// 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), IEEE, 2017: 1-4.
- 高红均,刘俊勇,魏震波,等.基于极限场景集的 [25] 风电机组安全调度决策模型[J].电网技术, 2013, 37(6): 1590-1595.
- ZHAO C Y, GUAN Y P. Data-driven stochastic unit [26] commitment for integrating wind generation [J]. IEEE Transactions on Power Systems, 2016, 31(4): 2587-2596.
- [27] DING T, YANG Q R, YANG Y H, et al. A data-driven stochastic reactive power optimization considering uncertainties in active distribution networks and decomposition method[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4994-5004.
- [28] 李兵,韩睿,何怡刚,等.改进随机森林算法在电机 轴承故障诊断中的应用[J].中国电机工程学报, 2020, 40(4): 1310-1319.
- [29] 申建建,张楠男,程春田,等.基于聚类分析和决策 树的"一库多级"水电站日调度方法[J]. 中国电机工 程学报, 2019, 39(3): 652-663.
- [30] 石访, 张林林, 胡熊伟, 等. 基于多属性决策树的电 网暂态稳定规则提取方法[J]. 电工技术学报, 2019, 34(11): 2364-2374.
- [31] 甄永赞, 阮程. 基于代价敏感支持向量机和多变量决 策树的分级自适应暂态电压稳定评估[J/OL].电网 技术: 1-14.[2023-09-13].DOI: 10.13335/j.1000-3673.pst.2023.0074.

作者简介:

彭浩晋(2000),男,硕士研究生,研究方向为数据驱动 的电力系统运行规划:

邱 高(1994),男,博士,副研究员,研究方向为电力系 统人工智能应用。

(收稿日期:2023-06-11)