基于 YOLOv5 的电力巡检图像缺陷识别研究

庞 博¹,鲍志远²,杨明坤³,张凌浩¹,孙小毛⁴,胡 强⁴

(1. 国网四川省电力公司电力科学研究院,四川 成都 610041;2. 清华大学,北京 100084;3. 国网四川省电力公司乐山供电公司,四川 乐山 614099;4. 清华四川能源互联网

研究院氢能系统与转化研究所,四川成都 610299)

摘 要:针对输电线路巡检中可能出现的裂化、老化、腐蚀、破损等诸多缺陷的情况,为保证输电线路运行的安全和稳定,文中开展了基于 YOLOv5 的电力巡检图像缺陷识别研究。在 YOLOv5 算法的基础上,结合电力巡检图像特点,采用 CIOU_Loss 作为 Bounding box 的损失函数,使其具有更快、更好的收敛效果;选用 DIOU_NMS 用于 NMS 处理,提高 对遮挡重叠目标的识别精度;同时,在对数据集进行分类处理后,采用"分别训练、统一推断"的方法,冻结部分网络层 权重来训练网络模型。实验结果显示,基于 YOLOv5 算法模型可以有效地识别电力巡检图像缺陷情况。

关键词:输电线路;缺陷识别;目标检测;YOLOv5

中图分类号:TM 726 文献标志码:A 文章编号:1003-6954(2022)05-0048-06

DOI:10.16527/j.issn.1003-6954.20220509

Research on Defect Recognition of Power Patrol Images Based on YOLOv5

PANG Bo¹, BAO Zhiyuan², YANG Mingkun³, ZHANG Linghao¹, SUN Xiaomao⁴, HU Qiang⁴
(1. Sate Grid Sichuan Electric Power Research Institute, Chengdu 610041, Sichuan, China;
2. Tsinghua University, Beijing 100000, China;
3. Sate Grid Leshan Electric Power Supply Company, Leshan 614000, Sichuan, China;
4. Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, Sichuan, China)

Abstract: In order to ensure the safety and stability of transmission line operation, image defect recognition research based on YOLOv5 is carried out in view of many defects such as cracking, aging, corrosion and breakage that may occur in line inspection. Based on YOLOv5 algorithm and combined with the characteristics of power patrol images, CIOU_Loss is used as the loss function of Bounding box to make it converge faster and better. DIOU_ NMS is selected for NMS processing to improve the recognition accuracy of occluded overlapping targets. At the same time, after classifying the dataset, the network model is trained by freezing some of the network layer weights using the method of "training separately and inferring uniformly". The experimental results show that the YOLOv5 algorithm model can effectively identify the defects of power patrol images. Key words; transmission lines; defect identification; object detection; YOLOv5

0 引 言

随着人工智能技术的飞速发展,越来越多的行 业引进人工智能技术,电力行业也不例外^[1]。国家

基金项目:四川省科技计划项目(2021YFC0113);国网四川省电力公司科技项目(52199722000Y)

电网积极响应国务院印发的《新一代人工智能发展 规划》的号召,紧跟科技发展的步伐,逐步扩大人工 智能在电网中的应用范围。

输电系统中有大量电力设备长期在户外运行, 受外界自然环境影响较大,易出现裂化、老化、腐蚀、 破损等诸多缺陷,传统的电力巡检采用直升机或无 人机航拍的方式,将采集的电力图像数据传回处理 中心由相关工作人员进行人工识别处理。这些缺陷 大部分为表面缺陷,通过采集可见光图像和对图像的 处理和识别,能够有效地发现电力设备的表面缺陷。

传统的巡检图片处理方法是基于图像学的方法,可在一定程度上减轻人工压力,但是由于传统的 图像学方法速度较慢、精度较低,在故障巡检领域难 以实际应用。与传统方法不同,基于深度学习的目 标检测方法利用卷积神经网络(convolutional neural network, CNN)来感知感受视野范围内的图像。随 着网络深度增加,不断扩大的感受视野范围在大型 图像的识别上有出色表现。

基于深度学习的目标检测模型主要分为一阶段 和两阶段模型,两阶段包括:1)选择检测框;2)对选 框中的内容进行分类。而一阶段模型中,直接将检 测框选择和内容分类都当作回归问题一起完成。

区域卷积神经网络(regions with CNN features, R-CNN)^[2]是最早的深度学习目标检测模型,其中 选框阶段使用传统图形学方法,即 Selective Search^[3],特征提取使用 CNN 网络,分类使用支持 向量机(support vector machine,SVM)分类。随着深 度学习目标检测领域不断的创新,Fast R-CNN^[4]、 Faster R-CNN^[5]等二阶段网络的出现,显著改善了 目标检测效果;一阶段模型包括 SSD^[6]、YOLO^[7]等 也纷纷出现,极大提升了检测速度;用于目标检测的 神经 网络特征 金字塔(feature pyramid network, FPN^[8])结构等开始应用于最新网络。基于深度学 习的目标检测在检测精度和检测速度上已经远超传 统图形学方法。

在实际应用方面,国家电网公司于 2018 年开展 了多旋翼无人机和直升机电力巡检航拍图像人工智 能处理技术验证。对电网常见的 8~9 种缺陷进行识 别,取得了 30%~89%的识别准确率,但在航拍图像现 场验证工作中,因为图像数据未经遴选,且大部分是 正样本,导致识别准确率只有 10%~30%。目前,实现 电力缺陷目标检测与分割方法,都存在着以下问题:

1)单一的模型只能识别有限几种典型的缺陷,对 于电网接近 500 种不同类型的缺陷来说还远远不够。 目前公开的电力数据集规模都比较小,单个数据集包 含的缺陷类型十分有限,从而导致检测种类较少。

2)模型的泛化能力差,难应用于工程实际。电 力系统构建在野外地区,图像背景十分复杂是其泛 化能力差的主要原因之一。 下面使用输电线路巡检的图像数据,以 YOLOv5模型为主体,研究"分别训练、统一推断"方 法的效果,进一步提高模型的识别精度。

1 YOLO 算法

YOLO 与 SSD 是两种最为典型的单阶段目标检 测算法。YOLO^[7]是第一种公开发表的单阶段目标 检测算法,相比当时主流的 R-CNN 等模型。虽然在 准确度上有一定的差距,但极大地提升了目标检测 的效率,推动了工业界对基于深度学习的目标检测 算法的应用。与 YOLO 同时间提出的单阶段目标检 测模型 SSD^[6],则是利用卷积而不是全连接层来提 取检测结果。接下来,研究者在 YOLO 网络的基础 上做了更多的改进,提出了 YOLOv2、YOLOv3、 YOLOv4、YOLOv5^[9-11]。这些模型的主要改进点分 别为:YOLOv2 尝试了当时多种流行的技巧,如批标 准化技术和锚框机制;YOLOv3 将特征提取网络替 换为 darknet-53, 并使用不同大小的锚框; YOLOv4 将激活函数替换为 Mish 激活函数: YOLOv5 在之前 版本的基础上,利用新的 LOSS 函数和瓶颈结构进 一步提升了算法的识别精度。目前, YOLOv5 作为 一个应用较为广泛的算法模型,实现了识别精度和 识别速度的平衡,相较于其他网络更为适合电网巡 检场景下的缺陷图像目标检测。

2 数据清洗与整理

如图1输电分类别数量统计柱状、目标区域大 小统计所示,通过观察原数据,发现原始的输电数据 中类别数量、尺寸差距十分悬殊。

图 1 输电分类别数量统计柱状、目标区域大小统计

如果直接用一个模型进行训练,可能会因为检 测目标尺度差异、样本数量差异,使得检测结果不 佳。如图2标注图所示,标注存在部分标注的情况,

...

也即是图像总是分类别标注的,标注总是"部分"的,这也给直接训练带来难度。

图 2 标注

解决方法是,将训练图片分成多个类别用多个 模型分别进行训练,统一进行推断。对包含的输电 线路数据进行整理和统计,可以得到如表1的输电 线路数据,其中有颜色代表最终使用的类别,白色是 因为数量、标注质量等问题而剔除的类别。

表1 训练数据集统计信息

类别	数量	名字	状态	备注
dachicun-05	1	大尺寸_05	缺陷	防震锤滑移、 偏移、位移
dachicun_fzc_ hy	855	大尺寸_防震锤 _滑移	缺陷	
dachicun_fzc_ sh	910	大尺寸_防震锤 _损坏	缺陷	
dachicun_fzc_ xs	12114	大尺寸_防震锤 _锈蚀	缺陷	
dachicun_fzc_ yc	6	大尺寸_防震锤 _异常	缺陷	
dachicun_fzc_ zc	3409	大尺寸_防震锤 _正常	正常	
dachicun_jgb	257	大尺寸_间隔棒	部件	
dachicun _ jyh _qx	74	大尺寸_均压环 _倾斜	缺陷	
dachicun _ jyh _sh	56	大尺寸_均压环 _损坏	缺陷	
dachicun _ jyh _zc	1033	大尺寸_均压环 _正常	正常	
dachicun_sjb	1	大尺寸_三角板	部件	
dachicun_sjb_ xs	185	大尺寸_三角板 _锈损	缺陷	
dachicun_xc_ xs	115	大尺寸_悬锤_ 锈蚀	缺陷	
dachicun_xc_ zc	44	大尺寸_悬锤_ 正常	正常	
dachicun_xj_ qx	307	大尺寸_线夹_ 倾斜	缺陷	
dachicun_xj_ xs	860	大尺寸_线夹_ 锈蚀	缺陷	

(续)				
类别	数量	名字	状态	备注
dachicun_xj_ zc	3457	大尺寸_线夹_ 正常	正常	
ddx	250	导地线	缺陷	断股、散股、松 股等 子导线、光缆
dxqy	395	导线区域	部件	线、引流线、引 下线、接地线、 预绞丝等
fushusheshi_ 01	480	附属设施_01	缺陷	标志牌图文不 清、破损等
fushusheshi_ 03	989	附属设施_03	缺陷	防 雷、防 鸟 设 施松动损坏等
fushusheshi_ 05	1	附属设施_05	缺陷	防汛、防外破 设施缺陷等
fushusheshi_ zc	467	附属设施_正常	正常	
ganta	254	杆塔	缺陷	鸟窝
ganta_02	711	杆塔_02	缺陷	塔身异物
jichu_01	701	基础_01	缺陷	杂物堆积
jichu_02	1	基础_02	缺陷	破损
jichu_03	128	基础_03	缺陷	沉降、取土等
jichu_05	47	基础_05	缺陷	冲刷、坍塌、滑 坡等
jichu_06	32	基础_06	缺陷	其他基础类缺 陷,如浸泡等
jiedi_04	26	接地_04	缺陷	引下线缺陷
jueyuanzi	1	绝缘子	正常	
jueyuanzi_01	270	绝缘子_01	缺陷	破损、缺失、自 爆
jueyuanzi_02	526	绝缘子_02	缺陷	污秽、灼伤
jueyuanzi_06	2	绝缘子_06	缺陷	其他绝缘子类 缺陷
junyahuan	628	均压环	正常	
junyahuan_ abnormal	362	均压环_不正常	缺陷	
jyz_ps	5	绝缘子_破损	缺陷	
jyz_tc	2	绝缘子_脱出	缺陷	
jyz_wh	437	绝缘子_污秽	缺陷	
jyzzb	1238	绝缘子自爆	缺陷	
lianjiechu	1207	连接处	部件	
tongdao_01	257	通道_01	缺陷	线路交跨距离 不足
tongdao_02	99	通道_02	缺陷	施工机械等外 破隐患
tongdao 03	107	通道 03	缺陷	线下构筑物

(续)

类别	数量	名字	状态	备注
tongdao_04	69	通道_04	缺陷	线下树竹
tongdao_05	2	通道_05	缺陷	烟雾、山火等
tongdao_06	70	通道_06	缺陷	其他通道类缺 陷
xiaojinjv	8888	小金具	正常	
xiaojinjv_ other	3	小金具_其他	缺陷	
xiaojinjv_ other1	1	小金具_其他1	缺陷	
xiaojinjv_qdp	45	小金具_缺垫片	缺陷	
xiaojinjv_qxd	437	小金具_缺销钉	缺陷	
xiaojinjv_ xdaz	124	小金具_销钉安 装	缺陷	小金具销钉安 装不规范
xiaojinjv_ xdtc	51	小金具_销钉脱 出	缺陷	
xiaojinjv_ xdxs	47	小金具_销钉锈 蚀	缺陷	
xiaojinjv_zc	1777	小金具_正常	正常	
viwu	3	异物	缺陷	

通过剔除数量较低、标注质量较差的类别,融合 数量较少、难以区分的多个类别,得到以下大类:

1)大尺寸:包含防震锤、悬锤、线夹,3类正常6
 类缺陷,共9类。

2)均压环:正常与异常共2类。

3)绝缘子:自爆和污秽共2类。

4) 鸟窝:存在鸟窝共1类。

5) 小金具:正常与异常共2类。

具体的类别统计信息如表 2—表 6 所示。

表 2 整理后新类别——大尺寸

原类别名称	数量	名字	缺陷/ 正常	新类别名称
dachicun_fzc_ hy	855	大尺寸_防震 锤_滑移	缺陷	dachicun _ fzc _ hy
dachicun_fzc_ sh	910	大尺寸_防震 锤_损坏	缺陷	dachicun _ fzc _ sh
dachicun_fzc_ xs	12114	大尺寸_防震 锤_锈蚀	缺陷	dachicun _ fzc _ xs
dachicun_fzc_ zc	3409	大尺寸_防震 锤_正常	正常	dachicun _ fzc _ zc
dachicun_xc_xs	115	大尺寸_悬锤_ 锈蚀	缺陷	dachicun_xc_xs
dachicun_xc_zc	44	大尺寸_悬锤_ 正常	正常	dachicun_xc_zc
dachicun_xj_qx	307	大尺寸_线夹_ 倾斜	缺陷	dachicun_xj_qx
dachicun_xj_xs	860	大尺寸_线夹_ 锈蚀	缺陷	dachicun_xj_xs
dachicun_xj_zc	3457	大尺寸_线夹_ 正常	正常	dachicun_xj_zc

	表 3 素	隆理后新 类别——	—均压环		
原类别名称	数量	名字	缺陷/ 正常	新类别名称	
dachicun_jyh qx	- 74	大尺寸_均压 环_倾斜	缺陷		
dachicun_jyh sh	- 56	大尺寸_均压 环_损坏	缺陷	junyahuan_	
junyahuan _ al normal	^{o-} 362	均压环_不正 常	缺陷	abnormal	
dachicun_jyh zc	- 1033	大尺寸_均压 环_正常	缺陷		
junyahuan	628	均压环	正常 junyahuan_ normal		
	表4 素	隆理后新类别——	—绝缘子		
原类别名称	数量	名字	缺陷/ 正常	新类别名称	
jueyuanzi_01	270	绝缘子_01	缺陷		
jyzzb	1238	绝缘子自爆	缺陷		
jyz_ps	5	绝缘子_破损	缺陷	jueyuanzi_ damaged	
jyz_tc	2	绝缘子_脱出	缺陷		
jueyuanzi_06	2	绝缘子_06	缺陷		
jueyuanzi_02	526	绝缘子_02	缺陷	jueyuanzi_	
jyz_wh	437	绝缘子_污秽	缺陷	dirty	
表 5	整理质	∃新类别───_鸟	窝等杆塔	异物	
原类别名称	数量	名字	缺陷/ 正常	新类别名称	
ganta	254	杆塔	缺陷	hird nest	
ganta_02	711	杆塔_02	缺陷	bitu_nest	
	表6 素	整理后新类别—	—小金具		
原类别名称	数量	名字	缺陷/ 正常	新类别名称	
xiaojinjv_othe	r 3	小金具_其他	缺陷		
xiaojinjv_ other1	1	小金具_其他1	缺陷		
xiaojinjv_qdp	45	小金具_缺垫 片	缺陷		
xiaojinjv_qxd	437	小金具_缺销 钉	缺陷	xiaojinjv_ abnormal	
xiaojinjv_xdaz	124	小金具_销钉 安装	缺陷		
xiaojinjv_xdtc	51	小金具_销钉 脱出	缺陷		
xiaojinjv_xdxs	47	小金具_销钉 锈蚀	缺陷		
xiaojinjv_zc	1777	小金具_正常	正常	xiaojinjv_	
xiaojinjv	8888	小金具	正常	normal	

3 评价指标

基于深度学习的目标检测常用的评价指标为精确

率 P(Precision) 和召回率 R(Recall), 如式(1) 所示。

$$P = \frac{T_{\rm p}}{T_{\rm p} + F_{\rm p}}$$

$$R = \frac{T_{\rm p}}{T_{\rm p} + F_{\rm N}}$$
(1)

式中:*T_p*为正样本被判定为正样本的个数;*F_p*为负 样本判定为正样本的个数;*F_N*为正样本被判定为负 样本的个数。不同的判定阈值可以得到不同的精确 率和召回率,进而绘制 *P*-*R* 曲线。

4 模型训练与分析

4.1 数据增强

在训练模型时,一般来说小目标的平均精度 (average precision, AP)比中目标和大目标低很多。 而数据集中也包含大量的小目标,但比较麻烦的是 小目标的分布并不均匀。

针对上述状况,在 YOLOv5 中使用了 Mosaic 数 据增强方法, Mosaic 数据增强的流程如图 3 所示。 利用随机裁剪和缩放后的图像进行随机拼接,生成 新的数据,在丰富了数据集的同时也变相地增加了 小样本目标的数量。也因为会同时计算 4 张图片的 数据,对计算内存的需求也因此降低。Mosaic 数据 增强后的样本如图 4 所示。

图 3 Mosaic 数据增强流程

图 4 Mosaic 数据增强后样本

4.2 图片处理

在网络训练中,网络在预设的锚框上进行预测, 并将预测的结果与标签进行差值计算,得到损失 后反向更新网络的整体参数。所以自适应锚框计 算也是重要的一部分,需要在数据集上初始设定 锚框。

在模型中设置锚框,第一个 YOLO 层是最大的 特征图尺寸为 40×40,对应最小的锚框。第二个 YOLO 层是中等的特征图尺寸为 20×20,对应中等 的锚框。第三个 YOLO 层是最小的特征图尺寸为 10×10,对应最大的锚框。

同时,YOLOv5采用了跨网格匹配规则,增加正 样本锚框数目的做法:对于任何一个输出层, YOLOv5采用形状(shape)匹配规则,计算标签框和 当前层的锚框的宽高比。如果宽高比大于设定的阈 值说明该锚框没有合适的标签框,在该预测层之间 将这些锚框当背景过滤掉。对于剩下的锚框,计 算其落在哪个网格内,同时利用四舍五入规则,找 出最近的2个网格,将这3个网格都认为是负责预 测该锚框的。

YOLOv5 增加正样本的方法,最多可增大到原 来的3倍,大大增加了正样本的数量,加速了模型 的收敛。

4.3 损失函数

原始 YOLOv5 损失函数 L_{object}如式(2) 所示,由 3 部分构成,其中置信度损失 L_{conf}和类别损失 L_{class}采 用二元交叉熵损失函数进行计算。

$$L_{\text{object}} = L_{\text{loc}} + L_{\text{conf}} + L_{\text{class}}$$

$$L_{\text{loc}} = 1 - C_{\text{lol}}$$
(2)

式中:*C*_{IoU}为目标框回归的损失函数。*C*_{IoU}综合考虑 了真实框与预测框之间的重叠率、中心点距离、长宽 比等各项参数的综合损失,显著提高了网络学习的 能力。其计算式如式(3)所示。

$$C_{\rm loU} = I_{\rm loU} - \frac{D_{o^2}}{D_{c^2}} - \frac{v^2}{(1 - I_{\rm loU}) + v}$$
(3)

式中:D_a为框 A 和框 B 的中心点距离;D_a为框 A 和 框 B 的最小包围矩形的对角线长;v 为衡量长宽比 一致性的参数,可以定义为式(4)。

$$v = \frac{4}{\pi^2} (\arctan \frac{w_{\rm gt}}{h_{\rm gt}} - \arctan \frac{w_{\rm p}}{h_{\rm p}})^2 \qquad (4)$$

式中: w_{gt} 、 w_{p} 、 h_{gt} 、 h_{p} 分别为真实框和预测框的宽度和高度。

4.4 NMS 处理

在目标检测的后处理过程中,针对很多目标 框的筛选,通常需要非极大值抑制(non maximum suppression,NMS)操作。

选择 DIOU_NMS 作为目标框筛选。因为在测试过程中,并没有标签框的信息,不用考虑影响因子,因此直接用 DIOU_NMS 即可。图 5 和图 6 分别为网络输出的所有候选框和筛选后的候选框。

图 5 所有选框与置信度信息

图 6 NMS 后删除多余框输出

4.5 实验环境

实验环境使用 CentOS7 x64 操作系统,使用 Tesla T4 显卡进行运算,显存大小为 16 GB,采用 Pytorch 深度学习开发框架进行模型的开发和训练。 4.6 结果分析

在数据清洗与整理环节中,整理出输电数据 集包含 20 000 张图片,用于 YOLOv5 模型的训练 与测试。将数据集随机分为训练集和测试集,其 中训练集 14 000 张图片,测试集 6000 张图片。使 用 YOLOv5 模型分别对所有的类别同时进行训练 和对 5 个类别分别进行训练,对两种训练方式进 行对比。

由于存在"部分标注""尺度区别过大"等问题, 未处理数据前的训练结果并不好。同时,因为目标 检测模型里,主干特征提取部分所提取到的特征是 通用的,把 backbone 冻结起来训练可以加快训练效 率,也可以防止权值被破坏。因此,数据分类处理 后,冻结 backbone 层,采用"分别训练、统一推断"的 方法,可以提升准确度。AP 均值、准确率、召回率对 比结果见表 7 所示。表 7 中,mAP_0.5 表示 IoU 为 0.5 时,所有类别的 AP 均值;mAP_0.5 : 0.95 表示 IoU 从 0.5 到 0.95,步长力 0.05 时所有类别的 AP 均值。

表 7 AP 均值、准确率、召回率对比

阶段	类别	mAP_0.5	mAP_ 0.5 :0.95	准确率	召回率
处理前	所有类别	0.564 5	0.366 6	0.551 6	0.563 5
	大尺寸	0.727 4	0.523 5	0.736 5	0.715 3
	鸟窝	0.900 2	0.472 5	0.928 0	0.846 7
处理后	绝缘子	0.800 3	0.526 2	0.787 9	0.808 3
	均压环	0.700 1	0.396 7	0.727 7	0.693 1
	小金具	0.555 5	0.242 3	0.666 3	0.561 7

从表 7 中可以看出,对数据进行分类处理后,除 小金具类别的 mAP_0.5:0.95 有所下降外,绝大部分 目标检测效果提升明显,大尺寸、鸟窝、绝缘子、均 压环 4 个类别的 mAP_0.5、mAP_0.5:0.95、准确 率、召回率较数据处理前均较大提升。

5 结 论

上面使用输电线路现场采集到的图像数据,经 数据分类处理后,冻结 backbone 层,采用"分别训 练、统一推断"的方法训练网络模型。实验结果表 明,利用"分别训练、统一推断"的方法在大尺寸、鸟 窝、绝缘子的缺陷类别中,基于 YOLOv5 的目标检测 算法对输电线路巡检图像的缺陷识别效果较好,可 以解决实际应用中的问题,在一些小尺寸缺陷识别 任务中,识别的精度有待提高。

参考文献

- [1] 华志刚,李璟涛,汪勇,等.发电行业人工智能应用[M]. 北京:中国电力出版社,2020.
- [2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587.

(下转第94页)

组分含量进行纵向比较,查看变化趋势,如果 H₂、 CO含量明显减小,CO₂、C₂H₄含量却明显增加,则 可以推断套管存在漏气缺陷;在没有历史数据的情 况下,与该变电站同类设备横向比较(同类设备使 用相同的绝缘油),如果烃类气体中仅 C₂H₄含量明 显偏高,同时 H₂含量明显偏小(<10 μ L/L),CO 含 量也明显偏小,既不符合过热特征,也不符合放电特 征,则可以判断套管存在漏气缺陷;在既没有历史数 据,也没有同类设备的数据进行比较时,如果油中 H₂、CO 含量明显偏小,CO₂、C₂H₄含量却明显较高, 既不符合过热特征,也不符合放电特征,则可以判断 套管存在泄漏缺陷。

2) 当判断套管存在漏气缺陷时,再判断套管故 障类型及故障严重程度:如果油中没有 C₂H₂,有 CH₄ 且 C₂H₄ 含量高,则套管存在过热故障;如果油 中有较高含量的 C₂H₂,则套管存在放电或高温过热 故障,当气体的产气速率大于逸散速率(即 H₂、CO、 CH₄、C₂H₆ 都是先增加、后减小然后又增加,CO₂、 C₂H₄ 一直处于增加的趋势)时,设备存在较为严重 的故障,建议退出运行。

参考文献

- [1] 操敦奎.变压器油中溶解气体分析诊断与故障检 诊断 查[M].北京:中国电力出版社,2005.
- (上接第53页)
- [3] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition [J]. International Conference on Computer Vision, 2013,104(2):154–171.
- [4] GIRSHICK R. Fast R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
- [5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
- [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector [C]//European Conference on Computer Vision, Springer, Cham, 2016: 21-37.
- [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779–788.
- [8] HARIHARAN B, HE Kaiming, DOLLAR Piotr, et al. Feature pyramid networks for object detection [C]//

- [2] 张淑珍.500 kV 变压器、电抗器的套管事故及障碍分 析[J].电力设备,2003,4(6):24-28.
- [3] 凌愍.变压器油中溶解气体分析诊断与故障检查[M]. 北京:中国电力出版社,2005.
- [4] 电力行业电力变压器标准化技术委员会.变压器油中 溶解气体分析和判断导则:DL/T 722—2014[S].北 京:中国电力出版社,2015.
- [5] 全国绝缘子标准化技术委员会.绝缘套管 油为主绝缘 (通常为纸)浸渍介质套管中溶解气体分析(DGA)的 判断导则:GB/T 24624—2009[S].北京:中国标准出 版社,2010.
- [6] 孟玉单,李萌才,贾瑞君,等.油中溶解气体分析及变压 器故障诊断[M].北京:中国电力出版社,2012.
- [7] 中国电力科学研究院.变压器油中溶解气体分析和判断导则:GB/T 7252—2001[S].北京:中国标准出版社,2002.
- [8] 全国高电压试验技术和绝缘配合文件化技术委员会高电压试验文件化分技术委员会.高电压测试设备通用技术条件第16部分:电力少油设备压力检测装置: DL/T 846.16—2021[S].北京:中国电力出版社,2022.
- [9] 黄晓峰.变压器套管将军帽过热缺陷典型特征分析[J].电工电气,2019(9):54-57.

作者简介:

鲁力铭(2003),男,研究方向为电力设备状态检测与诊断。

(收稿日期:2022-06-04)

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117–2125.

- [9] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
- [10] REDMON J, FARHADI A. Yolov3: An incremental improvement[EB/OL].[2021-03-25].https://arxiv. org/pdf/1804.02767.pdf.
- [11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection [EB/OL].[2021-04-15].https://arxiv.org/abs/2004. 10934.

作者简介:

人工智能技术。

庞 博(1994),男,硕士,助理工程师,研究方向为人工 智能图像识别;

鲍志远(1997),男,博士研究生,研究方向为电动汽车;

杨明坤(1994),男,助理工程师,研究方向为缺陷识别;

张凌浩(1985),男,博士,高级工程师,研究方向为电力