海上风电送出交流高压单芯电缆并联通流特性研究

李浩原 周国梁 李文津 刘 超

(中国电力工程顾问集团中南电力设计院有限公司 湖北 武汉 430071)

摘 要:由于海上风电送出规模的增大 需采用多根电缆并联进行输电。多回并联电缆平行敷设时,由于电磁耦合的 作用,电缆间阻抗不一致导致同相并联电缆间电流分配不均匀,造成电缆载流量得不到充分利用,严重时甚至会引起 电缆过热损坏,因此,有必要对并联电缆的通流特性进行研究。首先,研究了电缆阻抗参数的计算方法,建立了电缆并 联运行的 PSCAD/EMTDC 仿真模型; 然后,计算了 8 种电缆布置方式下并联电缆的分流情况,并对结果进行了分析对 比,给出了最优的布置方式;最后研究了分流不均匀系数的影响因素,并针对工程实例进行了计算和优化,优化后电 缆分流不均匀现象得到明显改善。

关键词:海上风电;电缆;并联;分流不均匀系数 中图分类号:TM246 文献标志码:A 文章编号:1003-6954(2020)01-0012-05 DOI:10.16527/j.cnki.cn51-1315/tm.2020.01.003

Research on Current – carrying Characteristics of Parallel Connected AC High – voltage Single – core Cable Applied in Offshore Wind Power Transmission

Li Haoyuan , Zhou Guoliang , Li Wenjin , Liu Chao (Central Southern China Electric Power Design Institute Co. , Ltd. of China Power Engineering Consulting Group , Wuhan 430071 , Hubei , China)

Abstract: Due to the increase of the scale of offshore wind power transmission , multiple cables are needed for parallel transmission. When multiple cables are laid in parallel , due to the effect of electromagnetic coupling , the impedance between each cable is inconsistent , resulting in uneven distribution of current in the same parallel cables , which will lead to insufficient utilization of current – carrying capacity of the cables , and even cause cable overheating damage in serious cases. Therefore , it is necessary to study the current – carrying characteristics of parallel cable. The calculation method of cable impedance parameters is studied , the simulation model with PSCAD/EMTDC is established for parallel operation of cables , the current distribution coefficients of parallel cable under eight cable layout modes are calculated , the results are analyzed and compared , and the optimal layout mode is given. The influencing factors for nonuniform coefficient of current distribution are studied , and the calculation and optimization are carried out for an actual project , and the uneven distribution of current is improved significant-ly after optimization.

Key words: offshore wind power; cable; parallel; nonuniform coefficient of current distribution

0 引 言

电力电缆的可靠性高,性能稳定,不易受到气候和环境的影响且节约占地,因此电缆得到越来越广 泛的应用。随着社会经济的发展,用电量的不断增加,对电网输电容量要求越来越高,为了满足电网的 输电要求,采用多回电缆并联运行日益普遍^[1-6]。 ·12· 对于海上风电送出,由于应用场所的特殊性,目 前均采用电缆作为输电通道。风机发出的电能,一般 升压至35 kV 后,由电缆送至升压站升压至220 kV, 再通过220 kV 电缆送至海上换流站或者直接接入 陆上交流电网。当风场输送功率较大时,220 kV 电 缆流过的电流会很大。由于目前电缆制造工艺的限 制 220 kV 交流电缆的通流容量已达到瓶颈,在超 过单根电缆通流容量的情况下,需采用多根电缆并 联进行输电。当电缆相距较近时,会存在临近效应, 导致同相并联的电缆之间的阻抗存在差异,阻抗越 大则电流越小。每根电缆都会受到同相和非同相的 其他电缆的影响,且电缆的布置方式不同,影响程度 不一样^[7-11]。因此,当并联通流的电缆布置方式不 合适时,可能会导致并联电缆之间的电流分配出现严 重不均衡的情况,这样就无法充分使用并联电缆的输 电容量,甚至会导致分流较大的电缆烧毁的现象^[12]。

因此,从提高电缆线路载流能力利用率和保 障电缆绝缘可靠性和运行寿命来考虑,研究电缆 并联通流时的电流分配系数具有显著的技术和经 济价值。

1 电缆阻抗参数计算

电缆阻抗参数的计算已有多种理论计算方法, 其中 Carson – Clem 理论的计算准确性和适用性最 优。以单导线 – 大地的简单回路为例,其中导线 a 与大地平行,如图1所示。图中:g 为大地回流的虚 拟导线; *I*_a为导线中流过的电流; *I*_g为通过虚拟导线 回流的电流; *D*_{ag}为虚拟返回导线与导线的距离,其 取值与大地电阻率有关^[13-14]。

图1 单导线 - 大地回路

根据图 1 的线路模型 ,导线与大地构成的回路 自阻抗为

$$Z_{\rm ag} = r_{\rm c} + r_{\rm g} + j0.1445 \lg \frac{D_{\rm g}}{D_{\rm s}}$$
 (1)

式中: r_{e} 为导线单位长度交流电阻,计算时可考虑导体的集肤效应; r_{g} 为大地等值电阻, $r_{g} = \pi^{2}f \times 10^{-4}$ = 0.0493 Ω/km ; D_{g} 为大地回路的等值深度,又称为 Carson 深度, $D_{g} = 660 \sqrt{\rho_{g}/f}$; D_{a} 为导线几何平均半径。

当两根平行导线与大地构成回路时形成的两个

回路之间的单位长度互阻抗,可视为一个回路流过 单位电流时在另一个回路上产生的电压降(数值上 相等)。因此,可求得两根平行导线 AB 间的互阻抗 Z_{AB}为

$$Z_{\rm AB} = r_{\rm g} + j0.1445 \lg \frac{D_{\rm g}}{D_{\rm AB}}$$
 (2)

式中 D_{AB} 为两根平行导线间的距离。

对于电缆阻抗参数计算来说,与导线最大的不同之处在于金属护套的存在(一般为铅护套或者铝护套)。金属护套的处理,大多将其视为导线。因此,金属护套Z,的自阻抗计算公式为

$$Z_{\rm s} = r_{\rm s} + r_{\rm g} + j0.1445 \lg \frac{D_{\rm e}}{D_{\rm s}}$$
 (3)

式中: r_s为金属护套的电阻; D_s为金属护套的几何平均半径。

两根电缆 x、y 的金属护套之间的互阻抗 Z_{sxy}为

$$Z_{\rm sxy} = r_{\rm g} + j0.1445 \lg \frac{D_{\rm e}}{D_{\rm sxy}}$$
 (4)

式中 D_{sxy} 为电缆 x 和电缆 y 金属护套之间的距离。 电缆芯线与金属护套之间的互阻抗 Z_{cs} 为

$$Z_{\rm cs} = r_{\rm g} + j0.1445 \lg \frac{D_{\rm e}}{D_{\rm s}}$$
 (5)

对于 ABC 三相交流电缆 芯线与金属护套的阻 抗矩阵为

$$\begin{bmatrix} U_{cA} \\ U_{cB} \\ U_{cC} \\ U_{sA} \\ U_{sB} \\ U_{sC} \end{bmatrix} = \begin{bmatrix} Z_{cAA} Z_{cAB} Z_{cAC} Z_{cAsA} Z_{cAsB} Z_{cAsC} \\ Z_{cBA} Z_{cBB} Z_{cBC} Z_{cBsA} Z_{cBsB} Z_{cBsC} \\ Z_{cCA} Z_{cCB} Z_{cCC} Z_{cCsA} Z_{cCsB} Z_{cCsC} \\ Z_{sAcA} Z_{sAcB} Z_{sAcC} Z_{sAA} Z_{sAB} Z_{sAC} \\ Z_{sBcA} Z_{sBcA} Z_{sBcA} Z_{sBcA} Z_{sBcB} Z_{sBC} \\ Z_{sCcA} Z_{sCcB} Z_{sCcC} Z_{sCA} Z_{sCB} Z_{sCC} \end{bmatrix} \begin{bmatrix} I_{cA} \\ I_{cB} \\ I_{cC} \\ I_{sA} \\ I_{sB} \\ I_{sC} \end{bmatrix}$$

式中: U_{eA} 、 U_{eB} 、 U_{eC} 为三相芯线电压; U_{sA} 、 U_{sB} 、 U_{sC} 为 三相金属护套电压; Z_{eXX} 、 Z_{eXY} 为芯线自阻抗和相间 芯线互阻抗; Z_{sXX} 、 Z_{sXY} 为金属护套自阻抗和相间芯 线互阻抗; Z_{eXSX} 、 Z_{eXSY} 、 Z_{sXeY} 为同相和非同相芯 线与金属护套之间的互阻抗 X、Y 分别代表 ABC 中 任意两相。

2 电缆仿真模型建立

对于电缆阻抗计算,相比于采用 Carson – Clem 理论阻抗矩阵的计算方法,采用 PSCAD/EMTDC 建 模仿真计算更为便捷和快速,PSCAD/EMTDC 有专 ・13・

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

门针对电缆的模型 将电缆实际参数输入模型即可。

图 2 电缆横截面 专 1 由缆结构参数

	C-96-41-9 2X	
基本结构	标称厚度/mm	标称外径/mm
导体(铜)		61.0
半导电尼龙带	0.14	
内屏蔽(绕包+挤制)	2.20	65.4
XLPE 绝缘	24.00	113.4
外屏蔽	1.00	115.4
半导电垫层	2.00	119.4
铝护套(焊接)	2.80	138.0
防腐层(沥青)	0.25	138.5
外绝缘护套	5.00	148.5
半导电层(涂覆)	0.50	149.0

PSCAD/EMTDC 仿真模型需对实际的电缆模型 进行一定的简化处理,经过简化后的电缆模型分为 4 层,分别为芯线、内绝缘层、金属护套、外绝缘层。

3 并联电缆载流计算

在 PSCAD/EMTDC 中建立两回三相并联电缆 运行分流的仿真模型,如图 3 所示,电缆长度、电 缆间距和电缆布置情况均可通过修改模型相关参 数改变。

3.1 并联电缆分流不均系数

电缆并联运行时,同相电缆间流过的电流可能 由于阻抗不同导致分流不均,采用分流不均系数*K* 来衡量。针对两回电缆并联运行的情况进行计算, *K*的定义见式(7),*K* 值越接近1,表明并联电缆间 分流越均匀,运行状况越理想。

- 3.2 并联电缆分流不均系数影响因素
 - 1) 电缆布置形式

下面列举了 8 种工程实际中可能用到的电缆布 置形式 加图 3 所示 ,图中 I 和 II 表示两回电缆线 路 *α* 和 *b* 表示电缆间距。分别计算这 8 种情况三 相电缆的 *K* 值 ,并对计算结果进行分析。按照前面

表 2 不同双回电缆布置方案电缆分流系数计算结果

_	K								
方案	l = 6 km	$\mu = 0.2 \text{ m}$	b = 0.5 m	l = 6 km	$l = 6 \text{ km } \mu = 1.0 \text{ m } b = 2.5 \text{ m}$		$l = 30 \text{ km } \mu = 0.2 \text{ m } b = 0.5 \text{ m}$		
	A相	B相	C 相	A 相	B相	C 相	A 相	B 相	C 相
方案1	0.65	0.91	1.67	0.79	0.95	1.31	0.57	0.96	1.84
方案2	0.72	0.98	1.33	0.81	0.99	1.21	0.73	0.98	1.31
方案3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
方案4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
方案5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
方案6	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
方案7	0.99	0.92	1.09	0.99	0.94	1.07	0.99	0.91	1.10
方案8	0.88	1.06	1.05	0.91	1.04	1.03	0.88	1.06	1.06

• 14 •

图4 不同双回电缆布置方案

所述的电缆参数建立电缆模型,电缆参数考虑3种 情况:①电缆长度l = 6 km,电缆间距a = 0.2 mb = 0.5 m;②电缆长度l = 6 km,电缆间距a = 1.0 mb = 2.5 m;③电缆长度l = 30 km,电缆间距a = 0.2 mb = 0.5 m。

根据图4中8种电缆布置情况,建立仿真模型, 计算得到的双回电缆分流系数计算结果见表2所示。

由于并联电缆各相施加的电压相同,且电缆的 规格相同,因此导致电缆间电流分配不均匀的主要 原因是电缆导体互阻抗的差异。

由表2的计算结果可以看出,方案1和方案2 并联电缆电流分配极不均匀。若采用这两种布置方 案,不仅会造成电缆选型方面的浪费,而且在故障过 流情况下,可能使并联电缆的其中一根超过其限制 而过热损伤。

总体而言,方案3、4、5、6最优,并联电缆中流过 的电流大小相同,能完全利用到电缆的载流能力;其 次是方案7、8;再次是方案2;最差的是方案1。

从 8 种方案的布置情况来看,对于同相两根电 缆 若它们的布置在整个两回三相电缆布置中的相 对位置越对称,则二者的互阻抗差异越小,而自阻抗 均相同,所以两根电缆间的电流分配会越均匀,分流 系数越接近于1。在8个布置方案中,方案3、4、5、6 中同相的电缆受其余电缆影响而产生的互阻抗均完 全相同,因此,分流系数均为1,为最优布置形式。

对于输电走廊紧张的城市电缆线路而言,方案 5、6 是最优选择,既可节约走廊宽度,又能充分利用 电缆的载流能力。在高度受限的应用场合(如电缆 夹层、活动地板等),方案3为最优方案。

2) 电缆间距

下面以方案1的布置方式,研究电缆间距对分 流不均匀系数的影响。

当电缆平行布置时,改变电缆间距是一种可行的措施,分别计算方案1情况下电缆间距为0.2 m、0.4 m、0.8 m、1.6 m、3.2 m和6.4 m等6种情况下 *K*值的变化情况,如图5所示。

由图 5 可看出 随着电缆间距的增大 K 值趋近 于1 并联电缆间电流趋于平均分配。因此 在条件 允许情况下 增大并联电缆布置间距 ,可改善分流不 均的状况。

由式(4)可知,单位长度电缆间的互阻抗随电缆间距的增大而减小,而电缆自阻抗不变,因此随着电缆间距的增大,同相两根电缆间的阻抗差异减小,因而电流分布更均匀。

3) 电缆长度

分别计算电缆长度为 0.1 km、0.4 km、1 km、 10 km、20 km、35 km 和 50 km 等 7 种情况下布置方 案 1 的分流不均匀系数 K 计算结果见图 6。

图 6 电缆长度对分流不均匀系数的影响

由图 6 可见 随着电缆长度的增加,边相 AC 的 不均匀系数呈增大趋势,尤其 C 相在电缆长度 50 km 时 K 值已超过 2;中相 B 的不均匀系数无明显 变化。因此,在长距离电缆并联输电中,要特别关注 电缆的布置方式,否则会出现严重的电流不均现象。 3.3 海上风电送出工程实例计算

某海上风电送出工程 ,220 kV 汇流母线至变压 器之间的电缆电流达 3600 A ,而目前单根 220 kV 单 芯电缆的通流容量一般不超过 2500 A ,因此需 2 回 电缆并联运行。电缆连接情况如下:电缆以 AB-CABC 的布置方式从 GIS 引出 ,经过 15 m 进入电缆 夹层 ,电缆夹层中长度为 50 m ,出电缆夹层连接到 联接变压器 220 kV 套管(此段长度为 15 m) ,变压 器套管处的电缆布置方式为 AABBCC。

GIS 出口处的电缆相序和间距见图 7 所示。变 压器 220 kV 套管接口处相序和间距见图 8 所示。

图 8 变压器 220 kV 套管接口处相序布置 若电缆夹层中电缆采用 GIS 出线的布置顺序布 置,计算得到的电流不均匀系数 K 值如表 3 所示。 表 3 优化前并联电缆 K 值

由继立尼山中继左罢亡安	K			
电缆关层中电缆印直刀条	A相	B 相	C 相	
ABCABC	0.771	1.055	1.317	

由表 3 可见,并联电缆间电流分配很不均匀,这 样当发生故障出现暂时过电流时,有可能会超过电 缆的通流限值,不利于设备安全稳定运行,因此,需 对夹层中的电缆布置进行优化。由于 GIS 出口至夹 层段和联接变压器套管至夹层段长度仅 15 m,不便 于改变电缆间距和布置方式,因此只能优化电缆夹 层中的电缆。将夹层中的电缆布置方式改为 ABC-CBA。调整后,计算得到的电流不均匀系数 K 值如 表 4 所示。

表4 优化后并联电缆 K 值

由姚本尼中由姚太黑大安	K		
电缆关层中电缆仰直刀杀	A相	K B相 1.043	C 相
ABCCBA	0.954	1.043	1.136

由表4可见,优化后电缆间电流不均匀程度得 到明显改善。采用优化电缆布置能有效改善并联电 缆分流不均的问题。

4 结 语

建立 PSCAD 仿真模型,对交流高压并联电缆的 电流分配不均匀系数进行了研究,主要研究工作和 结论如下:

 1) 计算了 8 种并联电缆布置方案下并联电缆 分流系数 K 值,计算结果表明: 方案 3、4、5、6 最优, 并联电缆中流过的电流大小相同,能完全利用到电 (下转第 58 页) (16): 49-55.

- [9] Wu Yuan , Su Xiaojie ,Tan Xiaqi ,et al. Cooperative Distributed Energy Generation and Energy Trading for Future Smart Grid [C]. 2014 33rd Chinese Control Conference (CCC) IEEE 2014.
- [10] Zhong Zhenfang, Meng Qingwei, Liu Jizhen. Control
 System Comprehensive Performance Assessment [C]. 第
 三十三届中国控制会议论文集(E卷),2014.
- [11] Prajna Paramita Dash ,Amirnaser Yazdani. A Mathematical Model and Performance Evaluation for a Single – Stage Grid – Connected Photovoltaic (PV) System [J]. International Journal of Emerging Electric Power Systems ,Volume 9 ,Issue 6 , ISSN (online) 1553 – 779x. DOI: http://doi.org/10.2202/1553 – 779x. 2033.

(上接第16页)

缆的载流能力;其次是方案 7、8;再次是方案 2;最差的是方案 1;对于同相两根电缆,若它们的布置在整个两回三相电缆布置中的相对位置越对称,则二者的互阻抗差异越小,而自阻抗均相同,所以两根电缆间的电流分配会越均匀,分流系数越接近于 1。

2) 对于输电走廊紧张的城市电缆线路而言,方 案 5、6 是最优选择,既可节约走廊宽度,又能充分利 用电缆的载流能力。在高度受限的应用场合(如电 缆夹层、活动地板等),方案 3 为最优方案。

3) 增大电缆间距可改善并联电缆分流不均现 象,电缆越长,并联电缆分流不均现象越严重。

4)针对工程实例,在既定相序连接的限制条件 下提出了优化措施,明显减小了并联电缆分流不均的程度。

参考文献

- [1] 杜伯学,马宗乐,霍振星,等.电力电缆技术的发展与研究动向[J].高压电器 2010 46(7):100-104.
- [2] 杨军,伍咏红,江文波,等.基于双端故障信息的高压 电缆-架空线混合线路故障测距方法[J].电网技术, 2010,34(1):208-213.
- [3] 王晓彤 林集明. 广东一海南 500 kV 海底电缆输电系 统电磁暂态研究[J]. 电网技术 2008 32(12):6-10.
- [4] 鹿洪刚,覃剑,陈祥训.35 kV 电力电缆在线故障测距 仿真研究[J].电网技术 2008,32(24):81-86.

- [12] B. Chitti Babu ,Suresh Gurjar ,Ashish Meher. Analysis of Photovoltaic (PV) Module during Partial Shading Based on Simplified Two – Diode Model [J]. International Journal of Emerging Electric Power Systems , 2015 ,16(1): 1613 – 1626.
- [13] Weiqi Yuan Jie Ji Zhao Meng et al. Comparison Study of the Performance of Two Kinds of Photovoltaic/Thermal(PV/T) Systems and A PV Module at High Ambient Temperature [J]. Energy 2018 ,148: 1153 - 1161.

作者简介:

 贾楚蕴(1995) 硕士研究生 从事光伏发电研究;
 李华强(1964) 博士研究生 教授 从事电力市场研究。 (收稿日期:2019-11-25)

[5] 胡志坚,陈允平,张承学,等.长距离高压电缆线路互 感参数测量[J].高电压技术 2002 28(5):17-18.

- [6] 索南加乐 杨铖 ,杨忠礼 ,等. 用于同杆双回线保护的 时域电容电流的分相补偿方法 [J]. 中国电机工程学 报 2010 30(1):77-81.
- [7] 王育学 涨哲 ,尹项根 ,等. 平行多回电缆序阻抗参数 的计算与分析 [J]. 电网技术 2011 35(8):186-191.
- [8] 邓星 ,蒙绍新 ,尹项根 ,等. 多回并联电缆线路参数的 不对称性分析 [J]. 高电压技术 2010 36(12): 3119 – 3124.
- [9] 徐政,钱洁.电缆电气参数不同计算方法及其比较[J].高电压技术 2013 39(3):689-697.
- [10] 韦刚 涨子阳 房正良 ,等. 多回输电线路并架的不平 衡性分析[J]. 高电压技术 2004(10):9-11.
- [11] 王晓彤,项祖涛,宋新立,等.采用垂直排列的500 kV 双回电缆线路参数的不平衡度分析[J].高压电器, 2017 53(2):132-138.
- [12] 李炳华. 低压阻燃电力电缆通流能力研究 [J]. 建筑 电气 2015 34(7):31-33.
- [13] 何仰赞 温增银.电力系统分析(上册) [M]. 武汉: 华 中科技大学出版社 2002:181-183.
- [14] 钱洁.电力电缆电气参数及电气特性研究[D].杭州: 浙江大学 2013.

作者简介:

李浩原(1987),博士,工程师,研究方向为柔性直流输 电、换流站绝缘配合。

(收稿日期:2019-11-25)

• 58 •