四川 500 kV 输电线路覆冰冰型观测及密度测量

陈 静¹ 林雪松¹ 周林抒²

(1. 四川省电力工业调整试验所 四川 成都 610072; 2. 重庆大学工程力学系 重庆 400030)

摘 要:针对四川 500 kV 输电线路覆冰进行现场冰型观测和覆冰密度测量 得到冰型和密度基础数据,为覆冰导线舞动的深入探讨和防治方法研究打下了坚实的基础。

关键词: 500 kV 输电线; 覆冰; 冰型观测; 覆冰密度测量; 覆冰导线舞动

Abstract: Aiming at the ice accretion of 500 kV transmission lines in Sichuan , the on – site ice – type observation and icing density measurement are carried out , and the basic data of ice type and density are obtained , which lays a solid foundation for the further discussion on iced conductor galloping and the research on its precautionary measures.

Key words: 500 kV transmission line; ice accretion; ice – type observation; icing density measurement; iced conductor galloping

中图分类号: TM732 文献标志码: B 文章编号: 1003 - 6954(2015) 02 - 0019 - 03 DOI:10.16527/j.cnki.cn51-1315/tm.2015.02.005

0 引 言

输电线路导线的舞动是一个长期困扰电网安全 运行的难题 导线舞动导致的线路跳闸、伤线、断线 甚至杆塔倒塌等事故造成了重大的经济损失和社会 影响。随着国家西部能源利用战略的实施 超、特高 压输电工程将大规模上马 对 500 kV 超特高压输电 线路的安全运行提出了更高的要求。

2008 年年初中国发生了重大冰雪灾害,致使承 担电力输送任务的输电线大量结冰,在覆冰导线空气 动力特性和舞动特性的双重作用下,电力系统遭受了 前所未有的严重破坏,严重影响了人民生活和经济发 展。因此对覆冰导线的舞动观测,为其防治方法研究 的深入开展就更加迫切和重要。

导线覆冰舞动问题的研究是一个复杂的系统工 程 要从理论和实践彻底解决舞动问题,还需要进行大 量的工作,包括机理研究、基本参数试验与测定以及工 程实践等。因地理环境和气候条件的差异,各地覆冰 导线的冰型和密度也不同。覆冰导线的冰型和密度的 观测,为覆冰导线基本参数的实验提供必要的参数。

1 导线舞动机理

输电导线舞动是指风激励下导线所产生的一种 低频、大振幅的自激振动 多发生在寒冬偏心覆冰的 输电导线上。其形成主要取决于导线覆冰、风激励 及线路结构参数等^[1]。

图 1 三自由度集中参数系统模型

影响覆冰导线舞动的主要因素有 3 个: 覆冰、风 和线路结构,目前被广泛接受的舞动机理理论主要有 Den Hartog 垂直舞动机理^[2]、Nigol 扭转舞动机理^[3] 和 Yu 的偏心惯性耦合机理^[4]。覆冰导线在风激励 下 竖向振动与扭转振动并不是孤立的,而是相互耦 合的。上述 3 种舞动机理都可以理论上通过式(1) 三 自由度导线振动及扭转振动的运动方程得出^[5]。式 (1) ~式(3) 中导线升力、阻力、扭矩系数和覆冰质量 等基本参数需通过实验得到。而这些空气动力学参 数与覆冰导线的冰型和密度密切相关,因此对覆冰导 线的冰型和密度的观测,对于研究具体工程线路导线 覆冰导线舞动问题,从工程实践上预防和防止导线舞 动而言是一项必要的基础性工作。

$$\begin{split} m\ddot{y} + \left[2m\zeta_{y}\omega_{y} + \frac{1}{2}\rho U^{2}D\left(\frac{\partial C_{L}}{\partial\theta} + C_{D}\right)\right]\dot{y} + k_{y}y \\ &= -m_{i}r\cos\theta_{0}\ddot{\theta} - \frac{1}{2}\rho u^{2}DC_{y}\frac{1}{U}\frac{dz}{dt} + \frac{1}{2}\rho u^{2}DC_{y}\frac{\partial C_{y}}{\partial\theta} \end{split}$$
(1)

$$m\ddot{z} + \left(2m\zeta_{z}\omega_{z} + \frac{1}{2}\rho U^{2}DC_{D}\frac{1}{U}\right)\dot{z} + k_{z}Z$$
$$= -m_{i}r\sin\theta_{0}\ddot{\theta} + \frac{1}{2}\rho U^{2}D\frac{\partial C_{D}}{\partial\theta}\theta \qquad (2)$$

$$J \ddot{\theta} + \left(2J\zeta_{\theta}\omega_{\theta} + \frac{1}{2}\rho U^{2}D^{2}\frac{\partial C_{M}R}{\partial\theta U}\right)\dot{\theta} + \left(k_{\theta} - \frac{1}{2}\rho U^{2}D^{2}\frac{\partial C_{M}}{\partial\theta} - m_{i}rg\sin\theta_{0}\right)\theta$$
$$= -m_{i}r\cos\theta_{0}\ddot{y} - m_{i}r\sin\theta_{0}\ddot{z} - \frac{1}{2}\rho U^{2}D^{2}C_{M}\frac{1}{U}\dot{z}$$
(3)

式中 θ 和 θ_0 分别为扭转角和初始凝冰角; m 和 m_i 分别为单位长度导线质量和覆冰质量; J 为单位长 度导线的等效转动惯量; $\zeta_y \ < \zeta_z \ < \zeta_\theta$ 分别为导线竖向、 横向、扭转方向的阻尼比; $k_y \ < k_z \ < k_\theta$ 分别为导线竖 向、横向、扭转方向的等效弹簧刚度; $\omega_y \ < \omega_z \ < \omega_\theta$ 分别 为导线竖向、横向、扭转方向的振动频率; $C_L \ < C_D \ < C_M$ 分别为导线升力、阻力、扭矩系数; U 和 D 分别为风 速度和迎风尺寸; r 为导线半径; C_y 为竖向风载荷系 数; R 是特征半径。

2 导线覆冰条件及类型

导线上要形成覆冰 必须具备 3 个条件:(1) 空 气湿度比较大,一般为 85% 以上,干雪不易凝结在 导线上,雨凇、冻雨或雨加雪是导线覆冰常见的气候 条件;(2) 合适的温度,一般为 0 ~ -5 ℃,温度过高 或过低均不利于导线覆冰;(3) 可使空气中水滴运 动的风速,一般大于 1 m/s。当空气相对湿度小或 无风、风速很小时,即使空气温度在 0 ℃以下,也不 能形成覆冰。

研究表明^[2]: 在气温为 -8 ℃ ~ -11 ℃,雨量 较少的情况下,由于细小水滴与试件表面一触即凝, 易形成典型的新月形覆冰,如图 2(a)所示;而当气 温较高,雨量较大时,水滴到达试件表面时达不到一 触即凝,此时,如风速较低,则形成典型的扇形覆冰, 如图 2(b)所示;若风速较低,则在水滴未凝结之前, 被风推挤而形成近似 D 形的覆冰,如图 2(c)所示。 新月形截面最容易引起导线的气动力失稳,导致导 线的低频大幅舞动。

3 现场覆冰观测

2008 年对四川西昌市美姑县大风顶西昌七里 坝二普1线、昭觉大坝乡瓦布村二普3线、美姑瓦侯 大风顶普洪 I、II 回线、黄毛梗普天线、普洪 I、II 回 线、马边县和峨边县对普洪 I、II 回线路建立观测站 并安装摄像头,现场记录了500 kV 四分裂导线的覆 冰情况并对导线覆冰密度进行了测量。

4 覆冰冰型观测

这次冰型观测线路为西昌七里坝二普1线、昭觉 大坝乡瓦布村二普3线、美姑瓦侯大风顶普洪I、II 回 线、黄毛梗普天线、普洪I、II 回线、马边县和峨边县对 普洪I、II 回线路7条线路,每条线路根据地貌不同分 别采集样本现场进行观测。发现四川西昌所观测到 的500 kV 覆冰冰型主要有新月形和扇形(D型)两 种。图3样本1所示可以视为新月形覆冰,可简化为 规则的新月形覆冰模型。图3样本2所示可以视为 扇形覆冰,可简化为规则的扇形覆冰模型。

 样本1
 样本2

 图3 西昌地区导线覆冰冰型样本

5 覆冰密度测量

5.1 测量步骤

• 20 •

2008 年 1 月 23 日,项目组成员曾前往西昌美 姑县大风顶和黄毛梗对 500 kV 线路覆冰进行了观 测。该地区为山区,平均海拔为 2 200 m,最高海拔 为 3 400 m。该地区湿度高,风速适宜,严冬期间输 电导线非常容易覆冰,属于输电线路中冰区 500 kV 普洪 I、II 回输电线路,以及普天 500 kV 输电线路均 经过该地区。这次重点观测了普天 500 kV 四分裂 线路导线覆冰情况。观测区域线路设计覆冰厚度为 20 mm,最大档距为 1 100 m,线路平均高度为 20 ~ 25 m。输电子导线采用 LGJ – 400/50 钢筋铝绞线, 地线采用 19 – 13.0 – 1270 – A – GB1200 – 88 型号 导线。间隔棒采用加拿大进口的 ZL4 型间隔棒。 观测该种间隔棒专用于重冰区的分裂导线,观测时 环境温度为 – 10 °C。

覆冰采样地点:西昌市美姑县大风顶。 采样地海拔高度:3000 m。 采样和测量时间:2008 年 1 月 23 日 10 点。 采样时环境温度:-10℃。 采样线路:普天 500 kV 四分裂线路。

5.2 测量原理

为测量覆冰的密度,应先测量覆冰的体积。测 量覆冰体积的实用方法是"排液法"。即将覆冰放 进与冰不相融的液体中,如四氯化碳、石油醚等。测 量覆冰排出的液体体积即得覆冰的体积。覆冰的质 量用高精度电子天平很容易测量,最后按下述公式 即可计算出导线覆冰的密度。

$$\rho_{\mathcal{K}} = \frac{m_{\mathcal{K}}}{v_2 - v_1} \tag{4}$$

式中 m_{*} 为覆冰的质量; v_1 为液体的原始体积; v_2 为放入覆冰后液体的体积。

5.3 测量结果

对该区域大风顶普洪 I、II 回线 500 kv 输电导 线覆冰截面形状进行定量分析。测量时选取了 10 块覆冰样块,每个样块分别进行了 3 次测量 测量结 果见表 1,经测量该段线路导线覆冰密度平均值为 0.856 g/cm³,导线覆冰的形状多为新月形型,属于 B 型混合淞。

6 结 论

对四川西昌地区多条 500 kV 输电线路的覆冰 情况进行了现场调研和测量,对线路覆冰冰型和覆

表1 导线覆冰密度的平均值

覆冰样块	测量值/(g・cm ⁻³)				平均密度
	1	2	3	4	$/(g \cdot cm^{-3})$
样块1	0.865	0.811	0.868	0.865	0.852
样块2	0.796	0.910	0.783	0.808	0.824
样块3	0.890	0.679	0.767	0.885	0.805
样块4	0.866	0.825	-	-	0.846
样块5	0.868	0.842	0.855	0.938	0.876
样块6	0.955	0.818	0.844	-	0.872
样块7	0.870	0.804	0.882	0.897	0.863
样块8	0.848	0.900	0.813	0.860	0.855
样块9	0.848	0.900	0.813	0.860	0.855
样块 10	0.890	0.890	0.887	0.998	0.916

冰厚度进行了观测 根据现场取样观测的情况,发现 四川西昌所观测到的500 kV 覆冰冰型主要有新月 形和扇形(D型)两种,在导线上覆冰的分布较均 匀,在地势较宽敞平坦的地方,由于湿度和风速等比 较均匀,导线上覆冰形状相对比较规则。对覆冰的 密度测量表明该区域覆冰为 B 型混合淞。由于新 月形截面最容易引起导线的气动力失稳,导致导线 的低频大幅舞动,该地区在线路设计上应对覆冰导 线舞动的预防和防治上应重点加以考虑。同时观测 结果能够为四分裂覆冰导线气动特性研究提供必要 的试验参数。

参考文献

- [1] 郭应龙 李国兴 ,尤传永. 输电线路舞动 [M]. 北京: 中 国电力出版社 2003.
- [2] O. Nigol, P. G. Buchan. Conductor Galloping. 1. Den Hartog Mechanism [J]. IEEE Transactions on Power Apparatus and systems J981, 100(2):699 – 707.
- [3] O. Nigol, P. G. Buchan. Conductor Galloping . 2. Torsional Mechanism [J]. IEEE Transactions on Power Apparatus and systems ,1981, 100(2):708-720.
- [4] P. Yu ,A. H. Shah ,N. Popplewell. Inertially Coupled Galloping of Iced Conductors [J]. Journal of Applied Mechanics – transactions of the ASME , 1992 59(1):140 – 145.
- [5] 夏正春. 特高压输电线的覆冰舞动及脱冰跳跃研究[D]. 武汉: 华中科技大学 2008.

(收稿日期:2014-12-08)