基于改进细菌群体 趋药性算法的风 – 蓄 – 火联合调度的研究

付 伟

(国网四川省电力公司 四川 成都 610041)

摘 要:由于风电功率波动性大,直接接入电网会给电网安全运行带来很大的风险。针对风电出力的随机性,在风电 预测的基础上,结合抽水蓄能削峰填谷的特点,提出了风 – 蓄 – 火联合系统日前和时前调度策略,日前调度阶段以 风一蓄一火联合调度获取最大经济效益为目标函数,采用改进的细菌群体趋药性算法进行优化,得到风、蓄、火的日 前出力计划。时前调度阶段对日前阶段的机组出力进行修正,首先在满足抽水蓄能、满足约束条件的情况下,修正抽 水蓄能的出力,再修正火电机组的出力,修正目标是以火电机组的运行成本最小。最后,以含风电场的算例对该模型 进行了验证,仿真结果表明了所提出的调度策略具有一定的可行性。

关键词:风电;火电机组;抽水蓄能;联合调度;细菌群体趋药算法

Abstract: Because the wind power has a severe fluctuation , and it can bring great risk to the safety of power grid if it is directly connected to power grid. According to the randomness of wind power , based on the wind power prediction and combined with the characteristics of the pumped storage , a two – stage coordinated joint dispatch strategy for wind farm and pumped – storage power station is proposed , which is consisted of day – ahead dispatch and hour – ahead dispatch. The day – ahead dispatching model takes the maximum economic benefits of the wind – storage – thermal joint operation as the objective , and it is optimized by the improved bacterial colony chemotaxis algorithm , so the day – ahead output of wind – storage – thermal is known. In hour – ahead dispatch stage , according to the results of short – term wind power prediction the planning power is constantly revised. Firstly , based on the satisfied constraint condition of pumped – storage unit , the output of pumped – storage unit is revised. Secondly , the output of thermoelectric generating set is revised. The objective is to make the cost of the operation of thermoelectric generating set minimum. Finally , the model is verified by an example containing wind farms , and the simulation results show that the proposed dispatching strategy is feasible.

Key words: wind power; thermoelectric generating set; pumped - storage; joint dispatch; bacterial colony chemotaxis algorithm

中图分类号: TM74 文献标志码: A 文章编号: 1003-6954(2015) 01-0071-06

0 引 言

风能是一种清洁、可再生能源,在国内外都得到 了一定的发展。但是由于风电具有随机性、波动性、 间歇性等特点,很难准确地估计出风电的出力,因此 限制了风电的广泛应用。抽水蓄能是比较成熟的储 能方式之一 将风电场和抽水蓄能联合运行为解决 风电出力的不确定性提供了有效的途径。抽水蓄能 在负荷低谷时通过风电抽水存储电能,负荷高峰时, 通过放水发电为负荷提供电能,与风电联合应用平 滑了风电出力的波动,使得风电具有一定的可调度 性^[1-3]。 文献 [4]将风电的运行可靠性考虑到调度模型 中,并用 MIP 模型进行优化求解,提高了系统运行 的可靠性。文献 [5]基于机会约束规划建立了风电 短期协调经济调度优化模型,该模型包含了日前调 度模型和时前滚动调度。文献 [6]以节能、经济、环 保为三大原则,建立了电力系统多目标优化调度模 型,引入多目标粒子群算法对模型进行优化求解。 文献 [7-8]考虑了抽水蓄能的启停成本和运行工 况,建立了风电 - 抽水蓄能联合运行以效益最大为 目标的模型。文献 [9]计及风电预测误差带的调度 计划渐进优化模型,提出了风电的日前和日内两阶 段调度,具有很好的启发意义。下面建立了以风 -蓄 - 火联合调度以联合运行经济效益最大为目标函

• 71 •

数的调度模型,采用改进的细菌群体趋药性算法对 调度模型进行求解,最后,应用算例来验证了该调度 策略的合理性。

1 风 - 蓄 - 火联合调度优化模型

1.1 日前调度模型

日前调度模型是根据次日负荷预测信息,风 – 蓄联合系统根据自身的风电预测、抽水蓄能的配置、 对弃风的惩罚等因素,配置好风 – 蓄联合系统的联 合出力,再安排火电机组的出力,以满足当日的负荷 需求。

为了兼顾风电机组、抽水蓄能和火电机组联合 经济调度,其目标函数具体包括混合系统的售电收 益、抽水蓄能处于抽水状态时的费用、考虑对弃风量 的惩罚等因素,在满足各个约束条件的情况下获取 最大的经济效益,综上所述,其具体的目标函数如式 (1)所示。

$$E = \max \left(\sum_{t=1}^{NT} \sum_{g=1}^{NG} \left(CP_{g}^{t} u_{g}^{t} - F_{Cg} \right) + \sum_{t=1}^{NT} CP_{w}^{t} + \sum_{t=1}^{NT} CP_{h}^{t} - \sum_{t=1}^{NT} C_{p} P_{p}^{t} - \sum_{t=1}^{NT} C_{dro} P_{dro}^{t} \right)$$
(1)

式中 E 为风电、抽水蓄能和火电机组一起调度所获 取的经济效益; u_g^t 表示火电机组的启停状态; NT 表 示时间段 这里为 24 小时; P_g^t 为火电机组 g 在 t 时 段内的出力; P_w^t 为风电机组在 t 时段内的出力; P_{dro}^t 表示 t 时段弃风量; P_h^t 表示 t 时段抽水蓄能机组的 出力; P_p^t 表示抽水蓄能机组 t 时段的抽水功率; C 表 示售电单价; C_p 表示抽水费用; C_{dro} 表示对弃风的惩 罚费用。

考虑"阀点效应"^[10]的火电机组燃料成本如式 (2)所示。

$$F_{Cg} = a_g + b_g P_g^{t} + c_g (P_g^{t})^2 + d_g |\sin [e_g (P_g^{t} - P_g \cdot \min]]$$
(2)

式中 $a_g \, b_g \, c_g \, d_g \, e_g$ 为发电机组 g 的燃料系数; $P_g \, \min$ 为火电机组 g 的最小输出功率。

1.2 约束条件

1) 系统有功功率平衡等式约束

$$\sum_{g=1}^{NG} P'_g + P'_w + P'_h = P'_L + P'_p$$
(3)

式中 P_L^t 表示在 t 时段内的负荷。

2) 火电机组的有功出力约束条件

$$P_{g.\min} \leqslant P_g^t \leqslant P_{g.\max} \tag{4}$$

• 72 •

式中 $P_{g.min}$ 、 $P_{g.max}$ 分别为火电机组 g 的最小输出功率、最大输出功率。

3) 火电机组的爬坡率约束

$$P_{g}^{t} - P_{g}^{t-1} \leq UR_{g}$$

$$P_{g}^{t-1} - P_{g}^{t} \leq DR_{g}$$
(5)

式中 $P_g^t P_g^{t-1}$ 分别为 t 时段和 t-1 时段火电机组 g 的发电功率; $UR_g DR_g$ 为火电机组 g 在时段 t-1 至 时段 t 的最大上升和下降功率限制。

4) 抽水蓄能出力约束

$$P_{h.\min} \leqslant P_h^t \leqslant P_{h.\max} \tag{6}$$

式中 $P_{h.min}$ 、 $P_{h.max}$ 分别表示抽水蓄能机组的最小出力和最大出力。

5) 抽水蓄能抽水约束

$$P_{p.\min} \leq P_p^t \leq P_{p.\max}$$

6) 抽水蓄能的水电转换关系

$$P_h^{\prime} = A \eta_h Q_h^{\prime} h_{\iota} \tag{7}$$

式中 *A* 为水电转换系数 ,一般为 9.81; η_k 为抽水蓄 能的水电转换效率; *h*_k 为水库在 *t* 时刻的水头高度。 7) 水量和库容约束

$$W_u^t = W_u^{t-1} - P_h^t \gamma_h \tag{8}$$

$$W_l^t = W_l^{t-1} + P_p^t \gamma_g \tag{9}$$

$$W_{u.\,\min} \leqslant W_u^t \leqslant W_{u.\,\max} \tag{10}$$

$$W_{l,\min} \leqslant W_l^t \leqslant W_{l,\max} \tag{11}$$

式中, W_u^t 为t时刻上水库容量; W_t^t 为t时刻下水库容量; γ_h 、 γ_g 为发电和抽水转换系数。

8) 抽水发电工况的等式约束

$$P_p^t \bullet P_h^t = 0 \tag{12}$$

式(12) 表示抽水蓄能的抽水功率和发电功率具有 互斥性,两者不能同时进行。

9) 系统旋转备用约束

$$\sum_{g} u'_{g} (P_{g. \max} - P'_{g}) + P_{h. \max} - P'_{h} \ge k_{l} P'_{L} + k_{w} P'_{w}$$
(13)

式中 k_l 为负荷的波动系数 ,这里取 10%; k_w 为风电的波动系数 ,这里取 15%。

1.3 时前调度模型

由于风电功率的日前预测误差比较大,所以引入时前调度模型。时前调度是指在第 t 时段预测剩 余时段的风电出力,并在日前调度相应时段调度的 基础上,修正各机组出力,修正抽水蓄能的计划出力 和火电机组的出力。在满足各个约束条件的基础上 修正的目标是以火电机组的燃料成本低加上对火电

机组出力波动的惩罚为数学模型。具体目标函数为

$$\min F = \sum_{t=1}^{NT} \sum_{g=1}^{NG} u_g^t \left[\left(a_g + b_g P_g^t + c_g \left(P_g^t \right)^2 + d_g \left| \sin \left[e_g \left(P_g^t - P_{g,\min}^t \right)^2 \right] \right| \right) + f_g \left| P_g^t - P_g^{t-1} \right| \right]$$
(14)

式中,前一部分代表火电机组的燃料成本,最后一部 分调度对火电机组出力波动的惩罚,以保证火电机 组平稳运行。f_g表示对火电机组g的出力惩罚成 本。本阶段调度的约束条件与日前调度的约束条件 相同,此处不再阐述。

2 改进的细菌群体趋药性算法

2.1 细菌群体趋药性算法的改进

BCC 算法的基本原理见文献 [11 - 13],传统的 算法细菌的移动表现出趋同性,容易陷入局部最优 解。在原有的基础上作了如下几个改进。

1) 移动速度上的改进

BCC 算法中细菌的移动速度是一个常数,这样 容易使细菌陷入局部最优,从而使算法收敛于局部 最优解。这里提出时变加速度思想,速度更新公式 如下所示。

$$v_{i}(t+1) = wV_{i}(t) + c_{1}r_{1}[x_{pBi} - x_{i}(t)] + c_{2}r_{2}[x_{gB} - x_{i}(t)]$$
(15)

$$x_{i(x+1)} = x_i(t) + v_i(t+1)$$
(16)

式中 c_1 和 c_2 为加速度; w 为惯性权因子; x_{pBi} 为细菌 自身的最佳位置; x_{gB} 为菌群的最佳位置 r_1 和 r_2 为 服从均匀分布于 [0,1]间的随机数。 c_1 和 c_2 由式 (17) 决定。

$$c_{1} = (c_{1f} - c_{li}) N_{c} / N_{max} + c_{1i}$$

$$c_{2} = (c_{2f} - c_{2i}) N_{c} / N_{max} + c_{2i}$$
(17)

式中 C_{1f} 、 C_{2f} 、 C_{1i} 、 C_{2i} 为常数,取 C_{1f} 、 C_{2i} 为2.5, C_{2f} 、 C_{1i} 为0.5。

2) 混沌模型的引入

在细菌群体趋药性算法中引入混沌模型,将代 替细菌的随机迁徙,这是因为混沌运动可以使混沌 变量在一定的范围内按自身规律不重复遍历所有状态。

Logistic 映射就是一个典型混沌系统,其具体模型如式(18)所示。

$$x_{k+1} = \mu x_k (1 - x_k) \tag{18}$$

式中 $\mu = 4$ 。

当某个细菌连续 m 次迭代中移动距离差的绝 对值小于预先设定的固定值时,则细菌以当前点为 中心,按照式(18)进行混沌搜索,使其跳出重叠区 域,再重新计算该细菌的适应度值,如果其适应度值 优于先前的适应度值,则更新该细菌的位置,退出混 沌搜索,若差于先前的适应度值,则搜索一定步数后 停止,当前细菌位置为最优位置。

2.2 模型求解

求解日前调度模型时将风 – 蓄 – 火日前联合调 度所获取的经济效益最大作为该算法的适应度函 数,日前联合调度的控制变量个数作为算法中细菌 的寻优维度,具体求解步骤如下所示。

 初始化参数: 设置细菌个体数 N, 维度 n, 精 度参数 ε 迭代次数 m 等。

 初始化细菌群体的位置:为了使机组的初始 出力均满足上述约束条件,采取式(19)和式(20)的 方法对细菌的位置进行初始化。

 $P_g^0 = P_{g.min} + \mu_g (P_{g.max} - P_{g.min})$ (19) 随机生成一个 [0,1]之间的数 α ,若 $\alpha < 0.5$,则抽水 蓄能处于发电状态,否则,处于抽水状态。

 $P_{h}^{0} = P_{h. \min} + \mu_{h} (P_{h. \max} - P_{h. \min}) \quad \alpha < 0.5$

 $P_{p}^{0} = P_{p.\min} + \mu_{p} (P_{p.\max} - P_{p.\min}) \quad \alpha \ge 0.5 \quad (20)$ $\mu_{g} \cdot \mu_{h} \cdot \mu_{p}$ 均是[o,l]之间的随机数。

 3) 在满足上述的各种约束条件下 选择较合理 的调度方案。并计算每个细菌的适应度。

4) 细菌位置的更新: 确定第 *i* 个细菌 *m* +1 代的 待选位置以及计算相应的适应度值。

若 $P_{gm}^{t} > P_{g. \max}$,则 $P_{gm}^{t} = P_{g. \max}$

若 $0 < P_{gm}^{t} < P_{g.\min}$,则随机取 $P_{gm}^{t} = P_{g.\min}$ 或 $P_{gm}^{t} = 0$ 。

P^t_{gm}代表火电机组 g 在 m 次迭代中 t 时段的出力,同理 抽水蓄能的出力或抽水功率时,其取值方式与机组出力取值方式相同。

5) 判断连续 m 步目标函数值之差是否小于 10 倍精度 若是 则进行混沌搜索,以当前点为中心进 行全局混沌搜索,寻找新的位置和目标函数值,如果 找到最优值,则更新并记录最优值,如果未找到,判 断是否达到移动步数,如果达到了,就更新并记录最 优值,否则,重新进行混沌搜索;如果大于 10 倍精度 值,则更新并记录最优值。

6) 判断是否达到最终精度,若是,则结束,反之,更新参数,重复上述步骤。

• 73 •

山山如伯会粉

= 1

农工 八七川坦多奴							
机组	1	2	3	4	5	6	
	0.5	0.25	0.25	0.2	0.1	0.1	
有功上限/p.u.	2	1	0.6	0.8	0.4	0.4	
ag/(\$/h)	786.798 8	945.633 2	1 049.997 7	1 243.531 1	1 658.569 6	1 356.659 2	
bg/(\$/MW • h)	38.5397	46.1591	40.396 5	38.305 5	36.327 8	38.270 4	
cg/(/(MW) 2 · h)	0.154 2	0.105 8	0.028	0.035 4	0.021 1	0.017 9	
dg/(\$/h)	450	600	320	260	280	210	
eg/(rad/MW)	0.041	0.036	0.028	0.052	0.063	0.048	
DRg/(p. u. /h)	-0.5	-0.3	-0.15	-0.2	-0.15	-0.15	
URg/(p. u. /h)	0.5	0.3	0.15	0.2	0.15	0.15	

时前调度模型是根据超短期的风电预测、日前 抽水蓄能的计划出力和日前火电机组的出力来修正 抽水蓄能和火电机组的出力,修正步骤如下。

判断超短期风电预测与日前预测结果的误差,让抽水蓄能和火电机组来承担这部分波动。

2) 在原来抽水蓄能出力的基础上 修正抽水蓄能
 的出力 原则是在满足抽水蓄能机组约束条件的情况
 下 改变抽水蓄能的出力 使得净负荷波动尽量小。

3)应用改进的细菌群体趋药性算法求解时前 调度模型的最优解,得到火电机组的时前计划出力。

3 算例分析

以某个地区的风电、抽水蓄能、火电机组联合调 度为例来验证所提出的模型和算法的正确性。该地 区配有容量为 30 MW 的风电场^[14] 6 台火电机组, 具体的参数如表 1 所示^[15]。抽水蓄能机组的额定 抽发容量为 40 MW,其利用效率为 0.9。抽水蓄能 机组的抽水费用取 0.075 元/kWh,弃风的惩罚费用 取 0.05 元/kWh,对火电机组出力波动的惩罚费用 取 0.03 元/kWh。假设售电价格是随时间变化的, 变化情况如图 1 中所示。

基于所建立的数学模型,应用改进的细菌群体 趋药性算法进行模型求解,利用 Matlab 编写算法程 序,求解出日前机组计划出力和时前机组计划出力, 所获经济收益为9.213×10⁶元。这里的细菌个数 为100,最大迭代次数为100次。图2给出了算法 与传统的BCC算法进行比较,其收敛速度明显优于 传统的算法。

图 1 给出了风 – 蓄联合出力和风电输出功率的 对比,从图中可以看出,由于风速的随机性导致风电 输出功率波动比较大,而风 – 蓄联合系统的输出功 率明显比风电输出功率的波动小,有效降低了风电 功率波动性,增加了风电并网对系统的安全性,由于 风 – 蓄日前计划出力又考虑了售电价格的变化等因 素,因此在前几个小时售电价格比较低时,抽水蓄能 处于抽水状态,将多余的风电存储起来在售电价格 高时售电以获得更高的经济效益。日前调度阶段火 电机组的出力情况见表 2 所示,其功率的基准值为 100 MW。

图 2 改进 BCC 与 BCC 算法的收敛图 图 3 给出了日前计划出力和时前计划出力的对 比,从中可以看出,在某些时段,特别是 19 点至 20 点时间段内,风 – 蓄时前计划出力满足不了日前计 划出力,主要有两方面的原因,一是提前几小时的风 电预测精度比提前一天的预测高;二是抽水蓄能的 容量有限 不能补偿风电的不足 ,从而达不到日前计 划出力的要求。

图 3 风蓄联合系统日前计划出力与时前计划出力 表 2 日前火电机组计划出力

时段一	火电机组输出功率						
	G1	G2	G3	G4	G5	G6	
1	0.631	0.552	0.183	0.318	0	0	
2	0.652	0.531	0.214	0.204	0	0	
3	0.582	0.431	0.221	0.270	0	0	
4	0.523	0.482	0.176	0.290	0	0	
5	0.523	0.482	0.176	0.290	0	0	
6	0.652	0.521	0.168	0.206	0	0	
7	0.932	0.428	0.241	0.292	0	0	
8	0.998	0.581	0.301	0.345	0	0	
9	1.203	0.475	0.242	0.384	0.198	0	
10	1.346	0.394	0.211	0.231	0.204	0.117	
11	1.396	0.349	0.287	0.225	0.152	0.123	
12	1.358	0.365	0.223	0.252	0.157	0.144	
13	1.116	0.451	0.275	0.354	0.189	0.112	
14	1.168	0.431	0.241	0.275	0.192	0.159	
15	1.352	0.326	0.182	0.214	0.151	0.208	
16	1.349	0.382	0.185	0.210	0.145	0.183	
17	1.431	0.397	0.231	0.258	0.157	0.114	
18	1.452	0.457	0.254	0.241	0.168	0	
19	1.467	0.515	0.236	0.253	0.172	0	
20	1.254	0.482	0.187	0.264	0.137	0	
21	1.223	0.532	0.204	0.346	0.124	0	
22	1.115	0.502	0.216	0.210	0.122	0	
23	1.073	0.325	0.196	0.202	0.107	0	
24	0.786	0.332	0.261	0.218	0	0	
图 4	给出了	7时前调	度阶段	2风 – 蓄	联合系	统的时	
前计划出	力和实	际出力	的对比	,从图中	可以看	冒出风 -	
蓄联合系	统计划	出力和	实际出	力基本	一致 泛	主要是	

因为时前风电预测的精度有所提高 ,风电出力的波动

基本可以用抽水蓄能来满足计划出力。由于限制了 抽水蓄能机组的出力和上下库水的容量 某些点不能 满足时前计划出力。时前火电机组计划出力见表 2 所示 其功率的基准值为 100 MW。对比日前火电机 组计划(表 2) 出力和时前火电机组计划出力(表 3) 可以看出 ,火电机组出力波动比较小 ,这主要是因为 在时前调度模型中 惩罚了火电机组的出力波动。

图 4 时前风蓄计划出力与实际出力的对比 表 3 时前火电机组计划出力

时段	火电机组输出功率						
	G1	G2	G3	G4	G5	G6	
1	0.631	0.552	0.183	0.318	0	0	
2	0.652	0.529	0.213	0.204	0	0	
3	0.583	0.431	0.221	0.270	0	0	
4	0.541	0.482	0.176	0.290	0	0	
5	0.537	0.482	0.176	0.290	0	0	
6	0.652	0.521	0.168	0.206	0	0	
7	0.932	0.431	0.247	0.295	0	0	
8	0.998	0.581	0.301	0.343	0	0	
9	1.205	0.478	0.244	0.385	0.198	0	
10	1.346	0.394	0.211	0.229	0.204	0.117	
11	1.394	0.349	0.287	0.225	0.152	0.123	
12	1.358	0.365	0.225	0.255	0.157	0.144	
13	1.116	0.451	0.275	0.354	0.189	0.112	
14	1.168	0.434	0.242	0.275	0.192	0.159	
15	1.355	0.326	0.184	0.214	0.151	0.208	
16	1.346	0.380	0.184	0.210	0.145	0.183	
17	1.433	0.404	0.237	0.260	0.157	0.114	
18	1.452	0.457	0.254	0.241	0.168	0	
19	1.467	0.515	0.258	0.258	0.172	0	
20	1.277	0.482	0.187	0.264	0.137	0	
21	1.229	0.532	0.204	0.346	0.124	0	
22	1.117	0.502	0.216	0.210	0.122	0	
23	1.080	0.325	0.196	0.202	0.107	0	
24	0.792	0.332	0.261	0.218	0	0	

结 论 4

建立了风 - 蓄 - 火的联合调度模型 应用改进 的细菌群体趋药性算法对模型进行优化求解 制定 了日前调度计划和时前调度计划,为风 – 蓄 – 火联 合运行系统的调度提供了有效的参考信息。具体内 容如下。

1) 针对日前调度阶段,建立以经济效益最大为 目标的模型 最后提供了提前一天每小时机组的计 划出力 时前调度阶段 建立了以火电机组运行成本 最低为目标的模型,提供了提前几小时机组的计划 出力。

2) 仿真结果表明,时前对风电功率的预测精度 更加精确,可对机组进行比较准确的调度。

参考文献

- [1] 卢锦玲, 苗雨阳, 张成相, 等. 基于改进多目标粒子群 算法的含风电场电力系统优化调度[J]. 电力系统保 护与控制 2013 41(17):25-31.
- [2] 杨媛媛 杨京燕 ,夏天 ,等. 基于改进差分进化算法的 风电并网系统多目标动态经济调度[J]. 电力系统保 护与控制 2012 40(23):24-29.
- [3] 张鹏 刘继春 吕林 ,等. 基于风蓄协调的节能调度方法 [J]. 电力系统保护与控制[J] 2011 39(2):29-24.
- [4] 胡国伟 别朝红 ,王锡凡. 考虑运行可靠性的含风电电力 系统优化调度[J]. 电工技术学报 2013 28(5):58-65.
- [5] Lou Suhua , Wang Zhilei , Wu Yaowu , et al. Coordinated Economic Dispatch for Power System with Significant Wind Power Generation Based on Chance - constrained Programming[J]. Transactions of China Electrotechnical Society 2013 28(10): 337 - 345.

(上接第21页)

• 76 •

成相应的铝合金时,可以大大提升金属铝的发、耐热 性能^[7] 以满足更高的负荷电流并提升材料的耐热 性能。

(3) 经对发热检修处理的经验,对故障引流部 件电流进行分流或加装辅助引流线,也能有效解决 发热缺陷 达到降低引流板温度的目的。

参考文献

- [1] 北京电力工业局.电力设备过电压保护设计技术规程 SDJ7 - 76: 试行修订说明 [M]. 北京: 水利电力出版 社,1977.
- [2] DL/T 71-2001 架空送电线路运行规程[S].

- 郑晓 涨静,马韬韬,等.基于改进决策方法的电力系 [6] 统多目标优化调度[J]. 电工技术学报, 2010 (9): 151 - 156.
- [7] 胡泽春,丁华杰,孔涛.风电-抽水蓄能联合日运行优化 调度模型[J]电力系统自动化,2012,36(2):36-41.
- Abreu L V L ,Khodayar M E , ,Shahidehpour M ,et al. [8] Risk - constrained coordination of Cascaded Hydro Units With Variable Wind Power Generation [J]. Sustainable Energy JEEE Transactions on 2012 3(3): 359 - 368.
- [9] 王洪涛 何成明 房光华 ,等. 计及风电预测误差带的 调度计划渐进优化模型[J]. 电力系统自动化, 2011, 35(22):131-135.
- [10] 刘静,罗先觉.处理梯级水电站复杂约束的短期水火 电系统环境经济优化调度[J].中国电机工程学报, 2012, 32(014): 27 - 35.
- [11] 陈继明,王元元,高艳亮.基于改进细菌群体趋药性 算法的配电网无功优化[J]. 电力系统保护与控制, 2012,40(14):98-102.
- [12] 黄伟 涨建华 涨聪 等. 基于细菌群体趋药性算法的 电力系统无功优化[J]. 电力系统自动化 2007,31 (7): 29 - 33.
- [13] 李秀卿 孙守鑫 涨超 等. 基于改进细菌群体趋药性 算法的无功优化[J]. 电力系统保护与控制 2011 39 (8): 56 - 59.
- [14] Dicorato M Forte G Pisani M et al. Planning and Operating Combined Wind - storage System in Electricity Market[J]. Sustainable Energy ,IEEE Transactions on , 2012, 3(2): 209 - 217.
- [15] 孙元章 吴俊 李国杰 等. 基于风速预测和随机规划 的含风电场电力系统动态经济调度[J]. 中国电机工 程学报 2009 29 (4):41-47.

作者简介:

(收稿日期:2014-10-14)

- [3] Holm R. Electrical Contacts [M]. New York: Springer, 1979.
 - [4] 葛猛 姜大宇 梁之林.架空地线耐张线夹过热原因分 析[J]. 电力安全技术 2005 7(4):17 22.
 - [5] 郭晓飞 李拥春 赵元林. 耐张引流发热的分析与处理 [J]. 电气技术 2010(8):136-139.
 - [6] 孟波. 电气静态接触发热的原因及处理方法 [J]. 电 气开关,2008,46(4):58-59.
 - [7] 李雪. 耐热导线耐张线夹发热问题解决方案研究 [D]. 保定: 华北电力大学, 2010.

作者简介:

敬兴东(1989) 硕士 研究方向为电气工程。

(收稿时间:2014-09-22)

付 伟(1981) ,工程师 研究方向为电网规划。