特高压交流输电线路重覆冰区 地线支架设计研究分析

周 唯 李澄宇 李 力 梁 明

(西南电力设计院 四川 成都 610021)

摘 要:根据重覆冰地区线路工程的设计经验和数据分析,对正在设计的特高压交流输电线路重覆冰区脱冰跳跃特 性进行了研究。分析了不同档距、不均匀覆冰时的导地线静态和动态的接近情况,提出了特高压交流输电线路重覆 冰区导地线的脱冰跳跃分析结论及重覆冰区杆塔地线支架布置要求,为后续工程设计提供参考。

关键词: 特高压; 交流输电线路; 重覆冰区; 数据分析

Abstract: Based on the design experiences and data analysis of transmission line projects in heavy icing area, the ice – shedding characteristics on UHV AC transmission lines which are in design now in heavy ice area are studied. According to the analysis of static and dynamic distance in ice – shedding jump of conductor lines, the analysis conclusion of ice – shedding characteristics on UHV AC transmission lines is proposed as well as the arrangement requirements for ground wire support of pole and tower in heavy icing area, which provides a valuable reference for the design of follow – up projects.

Key words: ultra high voltage (UHV); AC transmission lines; heavy icing area; data analysis

中图分类号: TM752 文献标志码: A 文章编号: 1003 - 6954(2014) 05 - 0019 - 05

0 引 言

中国资源分布集中在西南、西北区域 远离东部 经济能源中心。采用特高压交流输电技术,能实现 远距离、大容量的电能传输。为缓解中国负荷中心 和发电能源分布不均衡、输电容量日益提高和线路 走廊日趋紧张的问题,中国需大力发展特高压交直 流输电^[12]。中国1000 kV 交流输电试验示范工程 已建成投运 同时拟建多个特高压交流输变电工程。 "十二五"期间 国家电网公司规划投资 5 000 亿元, 将建设特高压输电线路 40 000 km、变电(换流) 容 量 430 GVA, 到 2015 年建成"三纵三横"特高压交 流骨干网架和 11 回特高压直流输电工程 形成大规 模"西电东送"、"北电南送"的能源配置格局^[3]。这 里将研究特高压交流输电线路重覆冰区导地线的脱 冰跳跃特性及对地线布置的影响,并根据数据分析 结果 ,为重冰区杆塔的地线支架设计提供参考 ,从而 提高重冰区杆塔的安全运行可靠性。

1 重覆冰区导地线型号

目前中国拟建和在建特高压交流输电线路工程

重覆冰区主要为 20 mm 冰区,导线选用 8 分裂 JL/ G1A-630/55 钢芯铝绞线,分裂距离为 400 mm。地 线选用 JLB20A-240 铝包钢绞线。

表1 导地线主要技术参数

项目	导线	地线	
导线型号	JL/G1A - 630/55	JLB20A – 240	
钢截面积/mm ²	56.31	179.07	
铝截面积/mm ²	639.92	59.69	
总截面 $/mm^2$	696.22	238.76	
铝钢截面比	11.36	0.33	
外径/mm	34.30	20	
单位质量/(kg・km ⁻¹)	2 206.4	1 595.5	
计算拉断力/kN	1 64.310	260.01	
20℃直流电阻/ (Ω・km ⁻¹)	0.0452	0.3601	
弹性模量 / (N • mm ⁻²)	65 000	147 200	
温度系数/(1⁻℃⁻¹)	20.5 × 10 ⁻⁶	13.0×10^{-6}	

2 重覆冰区导地线的接近闪络及解决 方法

从已有重覆冰线路地区的长期运行经验可知,

• 19 •

导地线的接近闪络主要有以下原因:地线因覆冰或 脱冰不均匀而产生较大的不平衡张力,因地线线夹 握力不足造成地线滑移,弧垂增大,从而造成导地线 在档距中央静态接近闪络;导线较地线先期脱冰,相 导线升高,造成导地线在档距中央静态接近闪络;在 融冰阶段,导线上冰凌突然脱落引起其跳跃,造成导 地线在档距中央动态接近闪络。

对于第1种情况,可采用强握力的地线线夹或 双线夹予以解决。对于后两种情况,则需研究导地 线水平位移及地线支架高度的合理取值,以保证重 覆冰地区线路脱冰状况下导地线之间的必要间隙。

3 不均匀覆冰时导地线档中的静态接近

线路不均匀覆冰时,不同档距的组合是影响档

距中导地线不均匀覆冰静态接近的一个重要因素, 参照超高压重冰线路设计经验及单回路特高压交流 线路工程的杆塔排位情况,采用连续7档中间档脱 冰的组合计算方法,对直线塔进行计算分析。耐张 塔按孤立档脱冰、连续档第1档脱冰两种情况进行 计算分析。

3.1 导地线不均匀覆冰档中静态接近的计算

特高压交流线路工程的重覆冰区段线路海拔均 在1800m以下,导线不均匀覆冰时,档距中导地线 静态接近需要满足的中心间距7.25m,即操作过电 压间隙值6.7m+分裂导线组合半径0.55m。按连 续7档杆塔中间档脱冰模型,模拟计算出在不均匀 覆冰情况下为保证导地线间静态接近的间隙要求, 及在不同脱冰率下的塔上最小垂直间距*S_v*。

项目		考虑风偏垂直	直线间距离/m	未考虑风偏垂直线间距离/m			
档距/m	操作间隙 S2/m	脱冰率 70%	脱冰率 80%	脱冰率 100%	脱冰率 70%	脱冰率 80%	脱冰率 100%
200	7.25	-3.52	-3.16	-2.61	-3.47	- 3.19	-2.62
400	7.25	-2.16	-1.09	1.25	-2.21	-1.16	1.14
500	7.25	-2.23	-0.48	3.29	-2.19	-0.59	3.11
600	7.25	-2.62	-0.23	5.26	-2.68	-0.36	4.99
700	7.25	-4.89	-1.88	5.29	-4.96	- 1.99	4.96
800	7.25	- 8.86	-5.53	2.68	-8.89	-5.61	2.35
		表3	不均匀覆冰时	要求耐张塔的最	小垂直间距		
项目		考虑风偏垂正	重线间距离/m		未考虑	息风偏垂直线间距	距离/m
档距/m	操作间隙 S2/m	脱冰率 70%	脱冰率 80%	脱冰率 100%	脱冰率 70%	脱冰率 80%	脱冰率 100%
200	7.25	7.11	7.19	7.59	7.12	7.19	7.59
300	7.25	5.89	6.08	6.39	5.89	6.11	6.39
400	7.25	4.08	4.29	4.56	4.11	4.31	4.59
500	7.25	1.69	1.89	2.16	1.69	1.89	2.19
600	7.25	-1.33	-1.24	-0.82	-1.35	- 1.29	-0.88
700	7.25	-4.84	-4.65	-4.36	-4.92	-4.73	-4.39
		表4 不均匀	习覆冰时要求耐引	长塔 – 直线塔上的	的最小平均垂直间	印距	
项目		考虑风偏垂直	直线间距离/m		未考虑	息风偏垂直线间距	佢离/m
档距/m	操作间隙 S2/m	脱冰率 70%	脱冰率 80%	脱冰率 100%	脱冰率 70%	脱冰率 80%	脱冰率 100%
400	7.25	3.73	4.65	6.85	3.69	4.59	6.72
500	7.25	3.89	5.46	8.85	3.88	5.35	8.65
600	7.25	3.38	5.55	10.45	3.39	5.45	10.26
700	7.25	1.51	4.45	10.35	1.48	4.09	10.11
800	7.25	-2.14	0.68	7.68	-2.14	0.65	7.52

表 2 不均匀覆冰时直线塔上要求的最小垂直间距

• 20 •

在不考虑导线和地线的水平偏移影响的情况 下,分析计算出导地线不均匀覆冰档中静态接近要 求的塔上最小垂直间距 S_v 的变化规律:对于孤立档 的 S_v ;随着档距的增加 S_v 要求值逐步减小;相同档 距下 S_v 要求值随着脱冰率的增加而增加。对于连 续档的 S_v ;随着档距的增加 S_v 要求值先增大后减 小;相同档距下 S_v 要求值随着脱冰率的增加而增 加。

结合拟建的特高压交流线路的重冰区杆塔规划 及排位情况,考虑最大档距600 m,最小孤立档300 m,70%、80%、100%脱冰率的条件下,导地线不均 匀覆冰静态接近时,对塔上地线支架高的要求值见 表5,确定重冰区杆塔地线支架高度时需同时满足 表5要求值。

脱冰率 /%	直线塔地线 支架高/m	耐张塔地线 支架高/m	耐张塔、直线 塔平均地线 支架高度/m
70	≥ -2.5	≥5.9	≥3.9
80	≥ -0.2	≥6.1	≥5.6
100	≥5.3	≥6.4	≥10.5

表 5 不均匀覆冰静态接近对地线支架高的要求值

3.2 水平位移 ΔS 对导地线间最小垂直间距 S_v 的 影响

杆塔规划时由于防雷保护角的要求及导线动态 脱冰的间距要求,导地线间往往需考虑一定的水平 位移,在导地线不均匀覆冰静态接近时计入 ΔS 水 平位移因素,有利于更合理的选择地线支架高度。

20 mm 重冰区孤立档档距 300 m,连续档档距 600 m,脱冰 80% 时最小垂直间距 S_v 与水平位移 ΔS 的关系如图 1。

图 1 20 mm 冰区水平位移 ΔS 与导地线间 最小垂直间距 S_v 的关系

由图 1 可以看出随水平位移 ΔS 的增大,导地 线间最小垂直间距呈加速递减的趋势,在水平位移 ΔS 小于 4 m 时,最小垂直间距 S_v 变化并不明显。

4 不均匀覆冰时导地线脱冰跳跃档距 中的动态接近

4.1 脱冰动力响应数值模拟方法

为准确掌握 1 000 kV 交流特高压送电线路重 覆冰区导地线脱冰后的动力响应问题。通过采用有 限元软件建立典型耐张段输电线路覆冰及脱冰的有 限元计算模型,计算模拟几种典型耐张段线路在不 同脱冰工况下导地线的动力响应。

表6 孤立档、连续档脱冰跳跃高度比较表

档距 /m	耐张段	脱冰率 50%	脱冰率 60%	脱冰率 80%	脱冰率 100%
500	孤立档	1.52	1.94	2.95	4.72
500	连续档	10.41	13.04	18.9	25.43
600	孤立档	1.43	1.71	2.66	4.37
	连续档	13.96	17.53	25.71	35.44
700	孤立档	1.47	1.85	2.88	4.22
/00	连续档	15.57	19.66	29.27	41.39
	= 7 711	+++++ >++ ++	+业+共产+国=		=

表7 孤立档、连续档横回摆动幅值比较表

<u> 地</u> 巧 / m	111、水 弦 / 0%	脱冰后最	
	肬/小平/%	孤立档	连续档
	50	0.53	0.58
500	60	0.62	0.76
300	80	0.73	1.25
	100	0.59	2.22
	50	0.84	0.65
(00	60	0.98	0.89
000	80	1.16	1.53
	100	0.47	2.98
	50	1.15	0.58
700	60	1.33	0.83
700	80	1.57	1.56
	100	0.41	3.41

注:风速 V=10 m/s。

通过模拟计算分析,孤立档的脱冰跳跃高度远 远小于连续档,横向摆动幅值在脱冰率较大的情况 下小于或接近于连续档。因此,不均匀覆冰时导线 脱冰跳跃档距中的动态接近计算可不考虑孤立档的 计算。

4.2 不均匀覆冰时导地线脱冰跳跃档距中的动态 接近计算

目前特高压交流输电线路的重覆冰区段海拔高 度均在1800 m 以下 导线不均匀覆冰时 档距中导 地线动态接近需要满足的中心间距为3.85 m(工频 电压间隙值3.3 m + 分裂导线组合半径0.55 m)。

• 21 •

	表8 不均匀復冰时且线哈上要氷的最小垂直间距										
		横向摆动幅值 B/m			脱》	脱冰跳跃高度 H/m			最小垂直间距 S_v /m		
13距 /m	上 一则间原 S1 /m		脱冰率/%			脱冰率/%			脱冰率/%		
/ 111	51711	70	80	100	70	80	100	70	80	100	
200	3.85	0.33	0.38	0.49	2.79	3.29	4.26	-5.90	-5.50	-4.50	
400	3.85	0.99	1.19	1.75	10.50	12.50	16.20	-1.50	0.47	4.28	
500	3.85	1.29	1.65	2.56	14.90	17.80	24.00	0.52	3.29	9.56	
600	3.85	1.48	1.99	3.42	19.10	23.10	32.30	1.66	5.76	14.90	
700	3.85	1.53	2.13	3.92	21.60	26.80	38.80	0.38	5.53	17.60	
800	3.85	1.14	1.76	3.98	21.70	27.50	41.30	-3.60	2.13	15.90	
		÷	表9 不均5]覆冰时要3	杉耐张塔 – 1	直线塔上的量	是小平均垂直	间距			

長9	不均匀覆冰时要求耐张塔	- 直线塔上的最小半均垂直间距

+싼 미드	工场问应	横向摆动幅值 <i>B</i> /m		脱》			最小垂直间距 S_v /m			
19距	上 则间限 S1/m		脱冰率/%			脱冰率/%			脱冰率/%	
/ 111	51711	70	80	100	70	80	100	70	80	100
400	3.85	0.96	1.13	1.69	10.80	12.30	16.10	4.49	6.05	9.78
500	3.85	1.28	1.58	2.42	15.20	17.80	23.60	6.53	9.09	14.90
600	3.85	1.49	1.89	3.16	19.50	23.20	31.40	7.79	11.40	19.70
700	3.85	1.38	1.92	3.53	22.20	26.70	37.30	6.99	11.50	22.10
800	3.85	0.99	1.43	3.41	23.30	27.80	39.70	3.93	8.60	20.40

按7档连续档模型中间档脱冰,计算出不同脱 冰率、档距组合下的导线跳跃高度、横向摆幅、塔上 最小垂直间距 $S_{\rm v}$ 。

在不考虑导线和地线的水平偏移影响的情况 下 导地线不均匀覆冰档中动态接近要求的塔上最 小垂直间距 S_v 的变化规律:导线脱冰跳跃高度、横 向摆动幅值随着档距的增加而增加 S_v 要求值先增 大后减小;相同档距下 S_v 要求值随着脱冰率的增 加而增加。

结合拟建的特高压交流线路的重冰区杆塔规划 及排位情况 考虑最大档距 600 m ,最小孤立档 300 m,70%、80%、100% 脱冰率的条件下,导地线不均 匀覆冰动态接近时,对塔上地线支架高的要求值见 表10。

表 10 不均匀覆冰动态接近对地线支架高的要求值

脱冰率 /%	直线塔地线 支架高/m	耐张塔地线 支架高/m	耐张塔、直线 塔平均地线支 架高度/m
70%	≥1.6	-	≥7.8
80%	≥5.7	-	≥11.3
100%	≥14.9	-	≥19.7

4.3 动态脱冰情况水平位移 ΔS 对导地线间最小 垂直间距 S_v 的影响

杆塔规划时由于防雷保护角的要求及导线动态 脱冰的间距要求 导地线间往往需考虑一定的水平 位移 在导地线不均匀覆冰动态接近时计入 ΔS 水 平位移因素,有利于更合理的选择地线支架高度。

20 mm 重冰区 连续档档距 600 m 脱冰 80% 时 最小垂直间距 S_v 与水平位移 ΔS 的关系如图 2 所 示∘

图 2 20 mm 冰区水平位移 ΔS 与导地线间 最小垂直间距 S_v 的关系

由图 2 可以看出随水平位移 ΔS 的增大,导地 线间最小垂直间距呈加速递减的趋势;在水平位移 ΔS小于2m时,由于导线脱冰横向摆动的影响,最 小垂直间距 S_v 并未减小; ΔS 在 2 ~ 4 m 区间 S_v 数 值变化不明显; 当 ΔS 取 6 m 时,此时距离已大于工 频电压间隙、横向摆幅、导线组合半径之和、因此理 论上地线支架高度可以取0。

• 22 •

表11 铁	塔不均匀覆冰要求的最小地线支架高
-------	------------------

脱冰率 /%	冰区 /m	脱冰跳跃 接近方式	直线塔地线支架高/m	耐张塔地线支架高 /m	耐张塔、直线塔平均地线支架高度 /m
70%		静态	≥ -2.8	≥5.6	≥3.6
/0%		动态	≥1.6	-	≥7.8
2001	20	静态	≥ -0.5	≥5.8	≥5.2
80% 20	20	动态	≥5.7	-	≥11.3
100%		静态	≥5	≥6.1	≥10.1
100%		动态	≥14.9	-	≥19.7

注: 上表中导地线间水平位移 $\Delta S = 0$ 。

5 小 结

综上所述 15 mm 冰区导线不均匀覆冰导地线 动、静态接近间距的要求对杆塔布置不起控制作用。 20 mm 冰区导地线动、静态接近要求的最小地线支 架高度汇总于表 11。从表 11 中可以看出无论是孤 立档、连续档第1档、连续档中间档脱冰后要求的地 线支架高均随着脱冰率的增加而增加 ,脱冰率的选 择对地线支架高的选择影响较大,《1 000 kV 架空 输电线路设计规范》(GB 50665 - 2011)并未对重覆 冰区校核导地线动静态接近时的脱冰率做出明确规 定 参考《重覆冰架空输电线路设计技术规程》(DL/ T 5440 - 2009) 对重覆冰线路脱冰率的规定 "330 kV 及以上重冰区线路可选不小于设计冰重的 80% ,中 冰区线路可选不小于设计冰重的 70%",并结合已 建 500 kV、750 kV、± 800 kV 交直流线路设计运行 经验 南方地区覆冰类型主要为雨凇覆冰 雨凇附着 力强 发生整档完全脱冰的概率极低 因此校核导地 线动静态接近时 20 mm 中冰区按 70% 脱冰率考虑 取值 重冰区按80% 脱冰率考虑取值^[4-5]。

表 11 中数据亦反应出导线脱冰动态接近对地 线支架高度影响更大。脱冰率 80% 条件下 ,20 mm 重冰区直线塔地线支架高度≥5.7 m ,耐张塔地线支 架高≥11.3 m(配合的直线塔支架高 5.7 m)时,可 满足导地线动态接近的间距要求。

(上接第18页)

参考文献

- [1] 吕瑞明. 变电站智能视频监控系统研究 [D]. 成都: 西 南交通大学 2008.
- [2] 高杨. 视频质量诊断算法研究与实现 [D]. 沈阳: 东北 大学 2011.
- [3] 任和 陈兆俊. 基于视频分析的视频质量检测系统实 现[J]. 中国铁路 2013(7):85-87.
- [4] 方芳.基于智能监控系统的视频图像质量检测的研究

综上所述 结合国内外以及西南电力设计院多年 重冰区设计、运行经验 特高压交流线路工程的导线 不均匀覆冰动静态接近的工况下 15 mm、20 mm 冰区 地线支架设计可以不考虑导地线间的水平位移。

参考文献

- [1] 赵彪 孙河 刘姜玲.特高压交流试验示范工程的经济 性[J].电力建设 2009 30(11):24-26.
- [2] Huang D C Shu Y B ,Ruan J J ,et al. Ultra High Voltage Transmission in China: Developments ,Current Status and Future Prospects [J]. Proceedings of the IEEE ,2009 ,97 (3):555 - 583.
- [3] 张文亮 吴维宁 胡毅. 特高压输电技术的研究与我国 电网的发展[J]. 高电压技术 2003 29(9):16-18.
- [4] Q/DG 1 A010 2008.1 000 kV 交流架空输电线路设 计技术导则[S]. 北京: 中国标准出版社 2009.
- [5] DL/T 5440 2009. 重冰区架空输电线路设计技术规 程[S]. 北京: 中华人民共和国国家能源局 2009.
- 作者简介:

周 唯(1982),硕士,工程师,从事输电线路技术设计 工作;

李澄宇(1963),本科,高级工程师,从事输电线路技术 设计工作;

李 力(1963),本科,教授级高级工程师,从事输电线 路技术设计工作;

梁明(1973),本科,高级工程师,从事输电线路技术 设计工作。

(收稿日期: 2014-05-29)

与实现[D]. 南京: 南京邮电大学 2013.

作者简介:

朱元全(1989),硕士研究生,主要研究方向为变电站视 频质量诊断相关技术研究;

王印松(1967),博士,教授,主要研究方向为先进控制 策略及其在电力系统中的应用、清洁能源发电控制技术;

常政威(1981),博士,高级工程师,主要研究方向为智能电网技术研究。

(收稿日期: 2014-06-24)

• 23 •