基于分布式参数的双端测距优化算法

印吉景¹ 刘宏君² 潘军军² 涂传坤²

(1. 泰州供电公司,江苏泰州 225300; 2. 长园深瑞继保自动化有限公司,广东深圳 518057)

摘 要:基于输电线路的分布式参数模型,采用两端的电气量进行测距计算,提出了双端测距优化算法。该算法详细 分析了故障时线路各点电压与电流的关系,利用接地电阻阻性特征确定故障位置,不受线路负荷、系统阻抗和过渡电 阻的影响,且具有较高精度。

关键词:分布参数;双端测距;阻性;优化算法

Abstract: Based on the distributed parameter model of transmission line, the optimization algorithm for two – terminal fault location is presented by adopting the electrical quantities at two terminals for the calculation of fault location. This algorithm makes a detailed analysis on the relationship for each point between its voltage and current when there has a line fault. Mean-while, this method also utilizes the resistive character of resistance to determine the fault location, which is not affected by the influence of line load, system impedance and transition resistance , and finally obtains a relatively high accuracy.

Key words: distributed parameter; two - terminal fault location; resistive character; optimization algorithm

中图分类号: TM744 文献标志码: A 文章编号: 1003 - 6954(2014) 03 - 0057 - 04

0 引 言

随着工业的不断发展,电能作为一种清洁的二 次能源在现在能源应用中的比例越来越高,成为人 类正常生活、生产的重要保证。而输电线路担负着 传送电能的重任,是电力系统安全运行的大动脉。 当输电线路发生永久性故障时,系统正常工作状态 遭到破坏,这时需要迅速地找到并排除故障,排除永 久性故障的时间越长,对整个系统稳定运行的危害 越大。由此提出了故障测距的研究课题,利用自动 程序进行运算,快速地发现人工难以发现的隐秘故 障,帮助系统工作人员及时地找到并排除故障,具有 巨大的实际应用价值^[1]。

故障测距可简单地分为单端算法和双端算法。 由于单端算法只采用线路一端的交流量进行测距计 算 在理论上无法避免过渡电阻、系统允许方式及分 布电容等带来的测距误差,而且单端测距算法主要 采用的阻抗法和故障分析法需要一定的系统允许方 式假定为前提,各参数大多取线路参数近似值,方程 计算精度低,导致故障测距的结果不准确。由于通 信技术发展,目前线路差动保护应用越来越广泛,利 用差动保护实现双端故障定位成为可能。基于线路 差动保护装置研究了一种高精度的双端测距算法, 并从电压电流的精确测量、差动保护同步精度的改 进和线路参数的对称度等方面对算法进行了改进, 最终完成了测距算法在差动保护装置中的集成实现,具有较强实用性和精确度。EMTP 仿真结果及 RTDS 动模实验结果表明,算法的测距结果具有较高的精度。

1 算法基本理论

图 1 是一个长线路的均匀分布参数模型,考虑 了导纳和阻抗的分布情况,将均匀传输导线设想为 许多无穷小的长度元 dx 组成,每一长度元 dx 都具 有电阻、电感、电容和电导。

• 57 •

对于长线路来说,不能忽略线路电导、电纳,即 有

 $Z = R + jX = l\dot{z}_0$

 $Y = G + jB = jb_0 l$

若线路发生单相接地故障,系统示意图如图2 所示。

图 2 单相接地故障

发生接地时,流经过渡电阻 R_g 的电流 I_F 即为差动保护装置所测差流,对于线路保护装置而言为电容电流补偿后的差流。

分析单相接地故障中各故障分量有 M 侧母线 测量点电压 结合阻抗分析有

$$\dot{U}_F = \dot{U}_M - \dot{U}_{MF} = \dot{U}_M - (\dot{I}_M + \dot{K} \cdot 3\dot{I}_0) \cdot \alpha \dot{Z} (1)$$

式中 \dot{Z} 为线路全长正序阻抗; $\alpha = \frac{MF}{MN}$ 为故障点距离 百分比。

对于不能忽略线路电导、电纳的长线路来说,等 值电路如图 3 所示。

$$\begin{array}{c|c} I_1 & Z & I_2 \\ \hline & & & \\ \downarrow & U_1 & & \\ Y/2 & & Y/2 & U_2 \\ \hline \end{array}$$

图 3 长线路等值模型

结合图 3 对式(1) 进行故障分量运算可得

$$\dot{U}_{F} = \left(\frac{\dot{Z}_{1}\dot{Y}_{1}}{2} \cdot \alpha^{2} + 1\right) \dot{U}_{M1} - (\dot{I}_{M1}) \cdot \alpha \dot{Z}_{1} \\ + \left(\frac{\dot{Z}_{2}\dot{Y}_{2}}{2} \cdot \alpha^{2} + 1\right) \dot{U}_{M2} - (\dot{I}_{M2}) \cdot \alpha \dot{Z}_{2} \\ + \left(\frac{\dot{Z}_{0}\dot{Y}_{0}}{2} \cdot \alpha^{2} + 1\right) \dot{U}_{M0} - (\dot{I}_{M0}) \cdot \alpha \dot{Z}_{0}$$
(2)

化简有

$$\dot{U}_{F} = \left[\frac{\dot{Z}_{1}\dot{Y}_{1}}{2}(\dot{U}_{M} - \dot{U}_{M0}) + \frac{\dot{Z}_{0}\dot{Y}_{0}}{2}\dot{U}_{M0}\right] \cdot \alpha^{2} + \left[-(\dot{I}_{M} - \dot{I}_{M0})\dot{Z}_{1} - \dot{I}_{M0}\dot{Z}_{0}\right] \cdot \alpha + \dot{U}_{M}$$
(3)

式中 $\dot{X}_1 = \frac{j}{X_{c1}}$; $\dot{Y}_0 = \frac{j}{X_{c0}}$; X_{c1} 、 X_{c0} 为线路全长正序容 ・58・ 抗; \dot{Z}_1 、 \dot{Z}_0 为线路全长正序阻抗。

由于接地电阻成阻性,分析可知 \dot{U}_F 与 \dot{I}_F 同相位。

解此一元二次方程 得到一个根(根据 $0 \le \alpha \le 1$ 去掉一个伪解)即为测距结果。

在此方程中,各参数差动保护装置都可获得,而 且由于长线路所产生的分布电容的影响可被线路保 护装置并联电抗器补偿和电容电流补偿所消除,大 大地减少了由于系统运行方式的不确定性增加的测 距算法的复杂性。

2 测距算法的验证

2.1 EMTDC 仿真验证

针对分布参数的测距方案,采用 PSCAD/EMT-DC 电磁暂态仿真软件搭建仿真模型。仿真系统采 用长度为 200 km 的典型双端 220 kV 系统模型,如 图 4 所示。

测试结果见表1~表4。

通过各因素条件下,双端测距优化算法的仿真 结果分析可知,双端测距优化算法不受故障位置等 各因素影响,具有较高的精确性,能够方便准确地应 用于差动保护装置。

2.2 RTDS 仿真验证

在长园深瑞的光纤分相纵差成套保护装置 PRS -753S 上实现了双端测距优化算法,实现了分布参数的双端测距方案。搭建 RTDS 试验采用的是双回 线模型,线路全长 200 km,具体模型如图 5 所示。

测试结果见表5~表7。

由表 5 ~ 表 7 分析可知,针对各种影响因素,基 于光纤差动保护装置的双端测距优化算法都具有较 高精度。

图 4 EMTDC 仿真模型

表1 A 相金属性接地短路故障分析故障位置因素

故障位置 /%	M 侧故障电压 幅值 /V	M 侧故障电流 幅值 /A	N 侧故障电压 幅值 /V	N 侧故障电流 幅值 /A	测距结果	误差分析 /%
20	44.26	3.42	52.34	1.08	0.1978	1.10
40	51.91	2.01	53.05	1.40	0.398 8	0.30
50	53.26	1.57	53.19	1.58	0.499 9	0.02
60	53.55	1.38	51.28	1.96	0.601 0	0.17
80	53.97	1.04	45.82	3.72	0.8017	0.21
100	49.01	1.01	0.001	21.99	0.998 9	0.11

表 2 线路 50% 处发生接地短路故障分析故障类型因素

故障	类别	M 侧故障电压 幅值 /V	M 侧故障电流 幅值 /A	N 侧故障电压 幅值 /V	N 侧故障电流 幅值 /A	测距结果	误差分析 /%
Ag		53.3	1.11	37.73	1.12	0.4999	0.02
DC	B相	50.35	2.62	50.14	2.74	0.4999	0.02
БСg	C相	50.57	2.59	51.06	2.45		
C A	C 相	57.87	2.44	57.80	2.64	0.4999	0.02
CA	A 相	51.63	2.64	52.06	2.44		
	A 相	49.36	3.26	49.15	2.94		
ABCg	B 相	49.29	2.87	49.29	2.92	0.4999	0.02
	C 相	49.22	2.52	49.43	2.91		

表 3 50% 线路处 A 相接地故障接地电阻影响分析

	M 侧故障电压 幅值 /V	M 侧故障电流 幅值 /A	N 侧故障电压 幅值 /V	N 侧故障电流 幅值 /A	测距结果	误差分析 /%
0	53.26	1.57	53.19	1.58	0.4999	0.02
1	53.12	1.64	53.05	1.67	0.4999	0.02
10	53.76	1.40	53.62	1.56	0.4998	0.04
50	56.52	0.65	56.24	0.96	0.500 0	0.00
100	57.23	0.29	57.02	0.65	0.4999	0.02
	表 4 两侧电源相角差的影响分析					

两侧相角 /°	M 侧故障电压 幅值 /V	M 侧故障电流 幅值 /A	N 侧故障电压 幅值 /V	N 侧故障电流 幅值 /A	测距结果	误差分析 /%
10	52.91	1.67	52.62	1.68	0.500 1	0.02
20	52.62	1.75	52.41	1.65	0.500 1	0.02
40	56.03	1.79	51.35	1.70	0.5009	0.18
60	53.97	1.90	50.07	1.77	0.500 6	0.12

• 59 •

	表 5 参数对称传输情况下的简单金属性瞬时短路故障						
序号	故障类型	M 侧测距/m	N 侧测距/m	测距误差/%			
1	30% – AN	58.7	141.3	0.65			
2	50% – ABN	99.7	100.3	0.15			
3	30% - BC	61.1	138.9	0.55			
4	70% – ABCN	140.2	59.8	0.10			

表6 参数不对称传输情况下的简单金属性瞬时短路故障

序号	故障类型	M 侧测距/m	N 侧测距/m	测距误差/%
1	30% – AN	62.8	137.2	1.4
2	50% – ABN	99.9	100.1	0.05
3	30% – BC	61.5	138.5	0.75
4	70% – ABCN	140.3	59.7	0.15
		表7 参数对称传输情况下的	的高阻接地故障	
	七府光明			测定记头运

序号	故障类型	M 侧测距/m	N 侧测距/m	测距误差/%
1	30% – AN – RG50	62.2	137.8	1.10
2	50% – AN – RG50	101.5	98.5	0.75
3	70% – AN – RG50	141.1	58.9	0.55

3 结 语

针对提出的双端测距优化算法进行了 PSCAD 仿真分析 搭建长度为 200 km 的典型双端 220 kV 系统模型 利用差分算法后用全波傅氏提取基波相 量以进行双端测距优化算法的计算。仿真结果充分 地证明了双端测距优化算法的正确性和稳定性,并 详细分析了可能对线路故障测距结果产生影响的各 类因素对算法的影响情况。最后的仿真实验结果表 明,故障位置、故障类型、过渡电阻、两侧系统阻抗以 及两侧电源相角差等因素都不会对双端测距优化算 法的结果精度产生影响。在长园深瑞的光纤分相纵 差成套保护装置 PRS - 753S 上实现了双端测距优 化算法 证明了理论的正确性。

参考文献

- [1] 葛耀中.新型继电保护与故障测距原理与技术 [M]. 西安:西安交通大学出版社,1996.
- [2] 朱声石. 高电压电网继电保护原理与计数 [M]. 北京: 中国电力出版社 2005.
- [3] 全玉生 杨敏中,王晓蓉,等.双端测距中的自适应线 路参数在线估计 [J]. 电力系统自动化,2000,24 (11): 26 - 30.
- [4] 康小宁.基于参数识别的高压输电线路故障测距研究 [D]. 西安: 西安交通大学 2006.
- [5] T Takagi , Y Yamakosi , M Yamaura , et al. Development of a New Type Fault Locator Using the One Terminal Voltage and Current Data [J]. IEEE Trans. on PAS., 1982, 101(8): 2892-2898.

作者简介:

印吉景(1976),工程师,从事电力系统生产管理;

刘宏君(1974),硕士,高级工程师,从事电力系统继电 保护和智能变电站的研究;

潘军军(1980),硕士,工程师,从事电力系统继电保护 和智能变电站的研究;

余传坤(1989),硕士,工程师,从事电力系统继电保护 研究。

(收稿日期:2014-01-06)