新型配电系统分布式源网荷储资源 广域电压自趋优管控方法

卢 宇¹,向 月¹,刘俊勇¹,曾平良²

(1.智能电网四川省重点实验室(四川大学),四川 成都 610065;2. 区域能源互联网技术浙江省工程实验室(杭州电子科技大学),浙江 杭州 310018)

摘 要:不同于单纯电能分配的传统配电网,新型配电系统逐步展现出源-网-荷-储等众多资源的强耦合强关联复杂 大系统形态,其各类资源呈现出"点多、面广、量少"的广域分布特征。挖掘可再生能源发电、分布式储能及柔性负荷 等分布式资源的广域电压调控潜力对构建源网荷储高度融合的新型配电系统具有重要意义。文中提出了一种基于 数据驱动的新型配电系统分布式源网荷储资源广域电压自趋优管控方法,通过可再生能源发电、储能及柔性负荷等 分布式资源的综合协同控制,在保证储能后备容量和降低网损的同时能够提高配电网广域电压质量。最后,以某城 市配电网为例验证了所提方法的有效性和先进性,比传统调压方法更加契合新型配电系统的电压调控需求。 关键词:新型配电系统;广域电压控制;分布式源网荷储资源;深度强化学习

中图分类号:TM 761 文献标志码:A 文章编号:1003-6954(2023)03-0001-08 DOI:10.16527/j.issn.1003-6954.20230301

Wide-area Voltage Self-optimization Control of Distributed Generation-Grid-Load-Storage Resources in Novel Distribution Systems

LU Yu¹, XIANG Yue¹, LIU Junyong¹, ZENG Pingliang²

(1. Sichuan Province Key Lab of Smart Grid (Sichuan University), Chengdu 610065, Sichuan, China; 2.Engineering Laboratory of Regional Energy Internet Technology (Hangzhou Dianzi University), Hangzhou 310018, Zhejiang, China)

Abstract:Differing from the traditional distribution network which is a pure power distribution system, the novel distribution system gradually shows the form of a large complex system with strong coupling and strong correlation of generation-grid-load-storage. These resources show the characteristics of wide-area distribution with many points, wide area and small amount. It is of great significance to explore the wide-area voltage regulation potential of distributed resources such as renewable energy generation, distributed energy storage and flexible load to the novel distribution system. A wide-area voltage self-optimization control method considering distributed genration-grid-load-storage for data-driven novel distribution system is proposed, the wide-area voltage quality of distribution network is improved through integrated cooperative control of these distributed resources, which can ensure backup capacity of energy storage and reduce network loss at the same time. Finally, taking an urban distribution network for example, the effectiveness and advancement of the proposed method are verified, which is more suitable for the voltage regulation requirements of novel distribution system than the traditional voltage regulation method.

Key words: novel distribution system; wide-area voltage control; distributed generation-grid-load-storage resources; deep reinforcement learning

0 引 言

在全球能源"低碳"大趋势下,以风光为主的可 再生分布式发电(renewable distribution generation, RDG)、分布式储能(energy storage system, ESS)及 柔性负荷(flexible load, FL)等分布式资源在配电网 中的渗透率逐年升高^[1]。2021年3月,中央财经委 员会第九次会议提出要构建以新能源为主体的新型 电力系统^[2];2022年8月,四川省提出积极推进源 网荷储一体化,积极构建源网荷储高度融合的新型 电力系统发展模式^[3]。

然而,作为新型电力系统的重要物理载体和基 石,新型配电系统中众多可调控资源不确定性、开放 性、复杂性的增加给上述目标的实现,特别是保证配 电系统电压质量带来巨大挑战,比如电压越限、电压 突变等事故的发生^[3]。因此,充分挖掘源网荷储等 分布式资源的广域电压调控潜力对建立源网荷储灵 活高效、互动互济的新型配电系统可靠运行体系具 有重要意义。

就调控设备而言,传统的电压调控主要是通 过控制电网中的无功调节设备如有载调压变压器 (on-line tap changer, OLTC)、并联电容器(parallel capacitor bank, PCB)组和静止无功补偿器(static var compensator, SVC)调节。这些机械装置通过改 变配电网的潮流分布进行电压管控,调控能力与其 在配电网中的安装位置强相关,因此无法有效调节 馈线远端的电压[4];另外,由于设备动作周期较长、 动作较慢而无法适应新型配电系统中 RDG 和负荷 的快速波动^[5]。随着新型电力电子器件的发展,新 型电压调控设备如风光逆变器和 ESS 应运而生,风 光通过新型逆变器可以为电网提供快速灵活的无功 电压支撑^[6],另外配电网中较高的 R/X 比使得有功 功率在电压控制方面和无功功率同样有效,因此 ESS 通过调节充放电功率能够补偿 RDG 的有功出 力间接性,提高电压质量^[7-8]。

就调控方法而言,现有电压调控模型多为基于 最优潮流^[9]的混合整数非线性规划问题,由于系统 中存在整数和非线性状态变量,该模型通常是非凸 的和 NP-hard 问题^[10]。但是这些方法存在计算速 度慢^[11]、优化模型复杂^[12]等问题,一方面这些方法 具有较高的建模依赖性,而另一方面准确描述某些 非线性电力电子器件特性的系统模型非常困难^[13]。 当以上基于模型的方法遇到瓶颈时,不需要精确 的系统模型且具有快速响应速度的数据驱动方法 应运而生,其中,深度强化学习(deep reinforcement learning, DRL)正成为研究者关注的热点^[14]。文献 [15]提出了利用深度神经网络技术求解配电网动 态最优潮流问题。文献[16]将自动电压无功控制 (automatic voltage control, AVC)问题通过启发式分 割智能体方法建模为马尔可夫决策过程并使用 DRL 方法进行求解,算例仿真表明储能可以控制配 电网有功功率的动态平衡以有效改善系统电压分 布。上述研究虽然使用了数据驱动的方法,但未充 分挖掘配电系统中多种分布式资源的综合协调互动 在配电网广域电压调控中的巨大潜力。

因此,下面提出一种基于数据驱动的新型配电 系统分布式源网荷储广域电压自趋优管控方法,通 过源-网-荷-储的综合协同控制实现配电网的广域 电压调控。首先,考虑新型电力系统中广域分布式 资源模型,以保证储能后备容量、降低网损、提高电 压质量为目标函数,提出了分布式源-网-荷-储广 域电压管控模型;然后,将该模型建模为非中心部 分可观马尔可夫决策过程(decentralized partially observable markov decision process, Dec-POMDP), 使用基于数据驱动的多智能体深度确定性策略 梯度(multi-agent deep deterministic policy gradient, MADDPG)算法求解;最后,以某中型城市配电网算 例对所提方法的有效性和先进性进行验证。

1 广域分布式资源模型

1.1 光伏发电系统

光伏发电系统利用光伏板将太阳能转换成电 能,由电池阵列、控制器、电力电子逆变器等元件组 成。其中,逆变器是光伏并网发电系统的核心,通过 控制逆变器实现光伏有功无功解耦控制。有功无功 解耦模型如下:

$$Q_{\rm PV} = a_{\rm PV} \sqrt{S_{\rm PV}^2 - P_{\rm PV}^2} \tag{1}$$

 $a_{\rm PV}^{\rm min} \le a_{\rm PV} \le a_{\rm PV}^{\rm max} \tag{2}$

式中: S_{PV} 为光伏逆变器的最大容量; a_{PV} 为光伏逆变器的无功系数。当 $a_{PV}>0$ 时,逆变器发出无功;当

*a*_{PV}<0时,逆变器吸收无功。夜间逆变器基于静止同步补偿器(static synchronous compensator, STATCOM)模式产生无功功率^[17]。

1.2 风力发电系统

风力发电系统通过风力发电机将风能转化为电 能。随着新型电力电子器件的发展,风力发电同样 可以通过控制逆变器实现有功无功的解耦控制。有 功无功解耦模型如下:

$$Q_{\rm WT} = a_{\rm PV} \sqrt{S_{\rm WT}^2 - P_{\rm WT}^2}$$
(3)

$$a_{\rm WT}^{\rm min} \le a_{\rm WT} \le a_{\rm WT}^{\rm max} \tag{4}$$

式中: S_{WT} 为风电逆变器的最大容量; a_{WT} 为风电逆变器的无功系数。当 $a_{WT}>0$ 时,逆变器发出无功功率;当 $a_{WT}<0$ 时,逆变器吸收无功功率。

1.3 分布式储能模型

分布式储能系统具有负荷与电源的双重特性, 可以通过自身的充放电吸收过剩电能或补充功率缺额。分布式储能模型主要包括容量递推模型、充放 电功率模型和容量模型,如式(5)—式(9)所示。

$$E_{\text{ESS}}(t+1) = E_{\text{ESS}}(t) \left(1 - \sigma_{\text{sdr}}\right) + P_{\text{ESS}}(t) a_{\text{ESS}}$$
(5)

$$S_{\rm oc}(t) = \frac{E_{\rm ESS}(t)}{E_{\rm ESS}^{\rm max}}$$
(6)

$$P_{\rm dc}^{\rm max} \leqslant P_{\rm ESS}(t) \leqslant P_{\rm c}^{\rm max} \tag{7}$$

$$a_{\rm ESS}^{\rm min} \leqslant a_{\rm ESS} \leqslant a_{\rm ESS}^{\rm max}$$
 (8)

$$E_{\text{ESS}}^{\min} \leq E_{\text{ESS}}(t) \leq E_{\text{ESS}}^{\max}$$
 (9)

式中: $E_{ESS}(t)$ 、 $P_{ESS}(t)$ 、 $S_{oc}(t)$ 分别为分布式储能在 时刻 t 的容量、充放电功率、荷电状态(state of charge, SOC); σ_{sdr} 为储能介质的自放电率; a_{ESS} 为分 布式储能的充放电系数; P_{c}^{max} 、 P_{dc}^{max} 为 ESS 最大充、放 电功率; E_{FSS}^{min} 、 E_{FSS}^{Fas} 为 ESS 容量上、下限。

1.4 柔性负荷模型

随着电动汽车、智能空调和热控负荷等设备的 发展,为新型配电系统提供了众多可控的柔性负荷 资源。柔性负荷可以通过主动调整自身的用电量和 用电时段来提高配电网运行可靠性,按照调整方式 的不同可分为可平移负荷、可转移负荷和可削减负 荷,这里主要考虑可削减负荷。可削减负荷是指时 间上不可转移,但在一定时间内的需求量可以灵活 增减的负荷^[18],模型为:

$$P_{\rm FL}^{\rm after} = (1 + a_{\rm FL}) P_{\rm FL}^{\rm before}$$
(10)

$$a_{\rm FL}^{\rm min} \leq a_{\rm FL} \leq a_{\rm FL}^{\rm max}$$
 (11)

式中:P^{before}、P^{after}分别为柔性负荷参与需求响应前、

后的需求量;a_{FL}为柔性负荷的需求响应系数。

2 分布式源网荷储广域电压管控模型

在 RDG、ESS、柔性负荷等分布式资源大规模接 人的新型配电系统中,通过调控 RDG 逆变器的无功 输出为配电网提供无功支撑,通过调控储能充放电 功率和柔性负荷参与需求侧响应实现配电网有功平 衡,达到源网荷储的协调互动,保证各节点电压在安 全范围内。下面构建了以保留储能后备容量、降低 网损和使各节点电压始终在安全范围为目标的分布 式源网荷储广域电压管控模型,所提模型包含的目 标函数和约束条件如下所示。

2.1 目标函数

广域电压管控的目标函数是在保证储能后备容 量和最小化网络无功损耗的同时,使各节点电压始 终在安全范围内。

min $F(P(i,t), Q(i,t)) = \partial_1 F_v + \partial_2 F_{ESS} + \partial_3 F_{P_{loss}}$ (12)

$$F_{v} = \sum_{t \in T} \frac{1}{N} \Big[\sum_{i \in N} 2 \left(v(i,t) - v_{ref} \right)^{2} \Big]$$
(13)

$$F_{\rm ESS} = \sum_{i \in V_{\rm ESS}} |S_{\rm oc}(i,t) - S_{\rm oc}(i,0)| \qquad (14)$$

$$F_{p,loss} = \sum_{i \in T} \frac{P_{loss}(t)}{S_{N}} = \sum_{i \in T} \frac{|I_{ij}(t)|^{2} r_{ij}}{S_{N}} \quad (15)$$
$$\partial_{1} + \partial_{2} + \partial_{3} = 1 \quad (16)$$

式中:P(i,t)、Q(i,t)、v(i,t)分别为节点i在时刻t的有功功率、无功功率和电压幅值; F_v 、 F_{ESS} 、 $F_{P_{-}Joss}$ 分别为对应节点电压质量目标函数、储能后备容量目标函数和网络有功损耗目标函数; ∂_{1-3} 为权重系数; $S_{oe}(i,t)$ 和 $S_{oe}(i,0)$ 分别为安装在节点i上的ESS 在时刻t和初始时的荷电状态;N、T、 V_{ESS} 分别为配电节点集合、电压调控周期和ESS 安装节点集合; $I_{ij}(t)$ 和 r_{ij} 为支路(i,j)上时刻t的电流幅值和支路电阻; S_N 为网络参考视在功率。

2.2 约束条件

约束条件包括配电网拓扑约束、配电网潮流约 束、分布式 RDG 的无功出力约束、ESS 充放电功率 和容量约束、柔性负荷参与需求响应的功率约束。

1) 配电网拓扑约束

$$K = (V, E) \tag{17}$$

配电网拓扑约束包括配电网拓扑 K 中所有的

节点 V 和支路 E 集合。

2) 配电网潮流约束

$$P_{\rm S}(t) + P_{\rm PV}(i,t) + P_{\rm WT}(i,t) + P_{\rm ESS}(i,t) - P_{\rm FL}^{\rm after}(i,t) - P_{\rm Load}(i,t) = v^{2}(i,t) \sum_{j \in V_{i}} g_{ij} - v(i,t) \sum_{j \in V_{i}} v(j,t) (g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij})$$
(18)

$$Q_{\rm S}(t) + Q_{\rm PV}(i,t) + Q_{\rm WT}(i,t) - Q_{\rm Load}(i,t) = -v^{2}(i,t) \sum_{j \in V_{i}} b_{ij} + v(i,t) \sum_{j \in V_{i}} v(j,t) (g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij})$$
(10)

式中: $P_{s}(t)$ 、 $Q_{s}(t)$ 分别为平衡节点注入有功、无功 功率; $P_{PV}(i,t)$ 、 $Q_{PV}(i,t)$ 分别为节点*i*上 PV 在时刻 *t*的有功、无功出力; $P_{WT}(i,t)$ 、 $Q_{WT}(i,t)$ 分别为节点 *i*上 WT 在时刻 *t* 的有功、无功出力; $P_{ESS}(i,t)$ 为安 装在节点 *i*上的 ESS 在时刻 *t* 的充放电功率; $P_{FL}^{after}(i,t)$ 为节点*i*上的柔性负荷参与需求侧响应后 的有功功率; $P_{Load}(i,t)$ 、 $Q_{Load}(i,t)$ 为分别节点*i*上负 荷在时刻 *t* 的有功、无功需求;*j*为与节点*i*相连的节 点集合, $j \in V_i$; g_{ij} 、 b_{ij} 分别为支路 *ij*上的电导、电纳; θ_{ij} 为节点*ij*之间的相位差。

3)分布式 RDG 的无功出力约束

$$Q_{\rm PV}^{\rm min}(i,t) \leq Q_{\rm PV}(i,t) \leq Q_{\rm PV}^{\rm max}(i,t) \qquad (20)$$

$$Q_{\rm WT}^{\rm min}(i,t) \leq Q_{\rm WT}(i,t) \leq Q_{\rm WT}^{\rm max}(i,t) \qquad (21)$$

式中: $Q_{PV}^{max}(i,t)$ 、 $Q_{PV}^{min}(i,t)$ 分别为节点 $i \perp PV$ 在时刻 t 的无功出力上、下限; $Q_{WT}^{max}(i,t)$ 、 $Q_{WT}^{min}(i,t)$ 分别为 节点 $i \perp$ WT 在时刻 t 的无功出力上、下限。

4) ESS 充放电功率和容量约束

$$P_{\rm dc}^{\rm max} \leq P_{\rm ESS}(i,t) \leq P_{\rm c}^{\rm max}$$
 (22)

$$E_{\rm ESS}^{\rm min} \leqslant E_{\rm ESS}(i,t) \leqslant E_{\rm ESS}^{\rm max}$$
(23)

5)柔性负荷参与需求响应的功率约束

$$P_{\rm FL}^{\rm min} \leqslant P_{\rm FL}^{\rm after} \leqslant P_{\rm FL}^{\rm max} \tag{24}$$

3 基于 MADRL 的电压管控方法

所提出的基于多智能体深度强化学习(multiagent deep reinforcement learning, MADRL)的电压管 控方法,将 PV、WT、ESS、柔性负荷等分布式资源建 模为神经网络组成的智能体,将配电网建模为多智 能体环境。多智能体通过与环境交互感知并适应配 电网中源网荷储状态的变化并调节自身动作,最终 实现对配电网电压的广域分布式控制。

广域分布式控制如图1所示。首先,将配电网

通过网络分区的方法建模为多智能体环境;然后,将 分布式广域电压管控问题建模为 Dec-POMDP;最 后,使用 MADDPG 算法求解所提 Dec-POMDP。

图1 广域分布式控制

3.1 网络分区

新型配电系统中的分布式资源具有"点多、面 广、量少"的特征。如果对所有分布式资源采取传 统集中控制,会导致变量过多、控制过程复杂等问 题。另外,传统集中式控制难以有效保障新型配电 系统中源网荷储的高效协同运行。因此,将配电网 划分为若干控制区,每个控制区含有一个或多个分 布式资源,不同区域内分布式资源的控制相互独立, 即每个控制区内的分布式资源只观测本地信息并接 收反映全局电压状态的反馈,可以实现对分布式资 源的广域分布式控制。

网络分区过程为:首先,确定配电内部的电压等级,不同电压等级的区域属于不同控制区;然后,在相同电压等级的区域,按照最短路径的分区方法,先确定一条主馈线,将其他馈线的终端节点到主馈线的最短路径视为一个控制区,保证每个控制区包含一个或多个分布式资源。

3.2 Dec-POMDP 建模

MADRL 是对深度强化学习问题的扩展,环境有 多个智能体,依靠智能体之间的协调互动探索环境 并完成共同目标。多智能体之间合作的 DRL 问题 通常被表述为 Dec-POMDP。Dec-POMDP 通常由一 组元组表示,即〈 I,S,A,O,T,ρ,γ 〉。其中:I为智 能体 集; S 为 状 态 集; A 为 联 合 动 作 集, A ={ $A_r,r \in I$ }, A_r 为智能体 r 的动作集; O 为联合观测 集, $O = \{O_r, r \in I\}$, O_r 为智能体 r 的动作集; $T:S \times A \times$ $S \rightarrow [0,1]$ 为描述环境动态变化的状态转移函数; R 为描述所有智能体在当前动作下的全局奖励函数; $\rho:S \rightarrow [0,1]$ 为描述初始状态的概率函数; γ 为折扣 系数,描述未来状态对当前奖励的影响。Dec-POMDP 框架中,所有智能体的目标是找到一个最优的联合 策略以获得最大折扣奖励。分布式广域电压管控问 题中 Dec-POMDP 模型如下所示。

1)智能体集

将配电网中的 PV、WT、ESS 和柔性负荷等分布 式资源视为智能体,PV、WT 通过控制逆变器来调节 输出无功;ESS 通过控制自身充放电功率来调节与 电网的交换有功;柔性负荷通过控制需求响应系数 来调节其参与需求响应的功率,智能体集表示为

$$I = \{I_1, I_2, \dots, I_N\}, N = N_{PV} + N_{WT} + N_{ESS} + N_{FL}$$
(25)

式中:N为全部智能体数量;N_{PV}、N_{WT}、N_{ESS}、N_{FL}分别为 PV、WT、ESS、FL 的数量。

2) 状态集和观测集

状态集 S'包括所有智能体在时刻 t 的状态量。 对于智能体 r,状态集 S',包含智能体 r 在时刻 t 的状态量,包括本区域内 PV 和 WT 有功无功出力、节点 电压、有功无功负荷、ESS 充放电功率、SOC、柔性负 荷参与需求响应后的有功功率。

$$S_{r}^{t} = \{P_{PV}(i,t), Q_{PV}(i,t), P_{WT}(i,t), Q_{WT}(i,t), v(i,t), P_{Load}(i,t), Q_{Load}(i,t), P_{ESS}(i,t), S_{oc}(i,t), P_{FL}^{after}(i,t)\}$$
(26)

式中,i为对应分布式资源所在节点, $i \in Z_r, Z_r$ 为智能体r所在区域。

观测集 O'包括所有智能体在时刻 t 的观测量, 与状态集一致。

3) 动作集

动作集 A' 包括所有智能体在时刻 t 的动作 集。对于智能体 r,动作集 A', 包含智能体 r 在时刻 t 的动作。

$$A_{r}^{t} = \begin{cases} a_{\rm PV}^{1}, \cdots, a_{\rm PV}^{N_{\rm PV}}, a_{\rm WT}^{1}, \cdots, a_{\rm WT}^{N_{\rm WT}}, \\ a_{\rm FSS}^{1}, \cdots, a_{\rm FSS}^{N_{\rm ESS}}, \cdots, a_{\rm FI}^{1}, \cdots, a_{\rm FI}^{N_{\rm FL}} \end{cases}$$
(27)

$$a_{\rm PV}^{\rm min} \leq a_{\rm PV}^i \leq a_{\rm PV}^{\rm max}, 1 \leq i \leq N_{\rm PV}$$
 (28)

$$a_{\rm WT}^{\rm min} \le a_{\rm WT}^i \le a_{\rm WT}^{\rm max}, 1 \le i \le N_{\rm WT}$$
(29)

$$a_{\text{ESS}}^{\min} \le a_{\text{ESS}}^i \le a_{\text{ESS}}^{\max}, 1 \le i \le N_{\text{ESS}}$$
 (30)

$$a_{\rm FL}^{\rm min} \leq a_{\rm FL}^i \leq a_{\rm FL}^{\rm max}, 1 \leq i \leq N_{\rm FL}$$
 (31)

式中: a_{PV}^{i} 为 PV 逆变器的无功容量系数; a_{WT}^{i} 为 WT 逆变器的无功容量系数; a_{ESS}^{i} 为 ESS 的充放电功率

系数;aⁱ_{FL}为柔性负荷的需求响应系数。

4) 奖励函数

奖励函数 R'为时刻 t 所有智能体在状态 S' 下执行动作 A'获得的实时奖励,参考优化目标 式(12)—式(16),奖励函数为:

$$R_{1}^{t} = -\sum_{i \in T} \frac{1}{N} \Big[\sum_{i \in N} 2 \left(v(i,t) - v_{\text{ref}} \right)^{2} \Big] \quad (32)$$

$$R_{2}^{t} = -\sum_{i \in V_{\text{ESS}}} \frac{1}{N_{\text{ESS}}} |S_{\text{oe}}(i,t) - S_{\text{oe}}(i,0)| \quad (33)$$

$$R_3^t = -\sum_{t \in T} P_{\text{loss}}(t)$$
(34)

$$R^{t} = \begin{cases} \partial_{1}R_{1}^{t} + \partial_{2}R_{2}^{t} + \partial_{3}R_{3}^{t} & 0 \leq S_{oc}(i,t) \leq 1\\ R_{done} & \text{else} \end{cases}$$

(35)

式中:*R*^{*i*}₁为节点电压奖励;*v*_{ref}为节点参考电压;*R*^{*i*}₂为 ESS 中 SOC 奖励;*R*^{*i*}₃为网络损耗奖励;*R*_{done}为一 个很大的惩罚项。

3.3 MADDPG 算法求解

MADDPG 算法是一种基于 Actor-Critic 框架的 多智能体深度强化学习算法,每个智能体有自己的 Actor 网络和 Critic 网络。Actor 网络以智能体观测 集 O,为输入,做出的最优动作集为输出。Critic 网 络以智能体状态集和动作集为输入,对 Actor 网络 决策的评价为输出。整个算法结构可以解释为使用 Actor 网络进行策略探索,使用 Critic 网络作为策略 的评价者,对 Actor 网络的探索策略进行评估比较 并得出最终的优质策略。

1)在 Actor 网络中,智能体 r 的动作探索可以表示为

$$A_r^t = \boldsymbol{\pi}_r(\boldsymbol{O}_r^t | \boldsymbol{\theta}_r^{\boldsymbol{\pi}}) + N(0, \boldsymbol{\sigma}_r^t)$$
(36)

式中: $\pi_r(O_r^t | \theta_r^{\pi})$ 为智能体 r 的动作函数; $N(0, \sigma_r^t)$ 为正态分布噪声。

根据所提广域分布式电压调控模型,目标动作 值函数定义为

$$Q_{r}(S', A') = -(\partial_{1}R_{1}' + \partial_{2}R_{2}' + \partial_{3}R_{3}'), S' \in D$$
(37)

式中:D为经验回放池; ∂_1 、 ∂_2 和 ∂_3 分别为奖励权重因子。

以智能体 r 为例,在每一次智能体 r 与环境交 互过程中,以动作值函数期望最大化为目标,通过实 现梯度上升方法更新 Actor 网络,目标函数和梯度 解析式为:

$$J(\theta_r^{\pi}) = \max_{S^t \sim D} \left[Q_r(S^t, A^t) \right]$$
(38)
$$\nabla_{\theta^{\pi}} J(\theta_r^{\pi}) \approx E \left[\nabla_{\theta^{\pi}} Q_r(S^t, A^t_r) = \pi_r(O^t_r | \theta_r^{\pi}), A^t_{-r} \right]$$

(39)

式中: A_{-r}^{t} 为除 r 外其他智能体的动作集; θ_{r}^{π} 为智能体 r 的 Actor 网络参数。

2)在 Critic 网络中,以最小化损失函数为目标 优化 Critic 网络参数 θ_r^{0} ,表示为:

$$L(\theta_{r}^{Q}) = \mathop{E}_{S^{t} \sim D} \left[\left(Q_{r}(S^{t}, A_{r}^{t}, A_{-r}^{t} \middle| \theta_{r}^{Q}) - y_{r}^{t} \right)^{2} \right] (40)$$

$$y_{r}^{t} = rd_{r}^{t} + \gamma Q_{r}(S^{t}, A_{r}^{t}, A_{-r}^{t} \middle| \theta_{r}^{Q})$$
(41)

式中: θ_r^{ϱ} 为智能体的 Critic 网络参数; γ 为折扣系数。

为了提高学习的稳定性,引入了 Target 网 络^[19],Target 网络中包括参数 $\theta_r^{\pi'}$ 、 $\theta_r^{q'}$,分别与 Actor 网络参数 θ_r^{π} 和 Critic 网络参数 θ_r^{q} 相对应。目标网 络中的参数通过缓慢跟踪的方式更新到 Actor 和 Critic 网络,更新表达式为:

$$\tau \theta_r^{\varrho} + (1 - \tau) \theta_r^{\varrho'} \longrightarrow \theta_r^{\varrho'} \tag{42}$$

$$\tau \theta_r^{\pi} + (1 - \tau) \theta_r^{\pi'} \longrightarrow \theta_r^{\pi'}$$
(43)

式中, τ 是一个接近于 0 的小值,用于更新 Target 网络。

MADDPG 算法的集中训练过程如表1所示。

表 1 MADDPG 算法训练过程

步骤	训练过程
1)	For episode $= 1, 2, \dots, M$ do
2)	初始化环境,包括 $t=0, rd'=0, S^0, A^0$
3)	将 S ⁰ , A ⁰ 带人环境进行潮流计算, 并反馈给智能体
4)	For $t = 1, 2, \dots, T$ do
5)	通过式(36)获取 A ^t ,通过过潮流计算获取 S ^{t+1} , A ^t , rd ^t 并 反馈给智能体
6)	For agent $= 1, 2, \cdots, I$ do
7)	将经验集 $\{S_r^t, A_r^t, r_r^t, S_r^{t+1}\}$ 放入回放经验池 D
8)	通过式(38)、式(39)更新 Actor 网络参数
9)	通过式(40)、式(41)更新 Critic 网络参数
10)	通过式(42)、式(43)更新 Target 网络参数
11)	End if $agent = R$
12)	End if $t = T$
13)	End if episode = M

4 算例分析

4.1 场景与参数设置

算例采用四川某中型城市配电网拓扑结构,如图2所示,由一座110kV变电站连接上级电网,电

网供电面积约79 km²,共3个电压等级,不同电压等级之间通过变压器连接。该电网包括6台变压器、5个PV、5个WT、5个ESS和2个柔性负荷。各类分布式资源的安装位置如表2所示,ESS参数如表3所示。各节点负荷选自3年152位用户负荷有功数据,在默认功率因数的基础上随机扰动5%产生实时无功损耗,然后将负荷和RDG数据^[20-21]以3min分辨率进行插值。从3年数据中选取其中2年数据作为训练集,1年数据作为测试集。

所用 MADDPG 算法的超参数设置如表 4 所示, 每个智能体的 Actor 网络和 Critic 网络架构相同,包 含 1 个输入层、2 个隐藏层和 1 个输出层。Actor 网 络输入层为 1×114 维的状态向量,隐藏层包含 128 个神经元,输出层为 1×23 维的动作向量;Critic 网 络输入层为 1×137 维的状态-动作向量。训练过程 中使用 5 个随机种子随机抽取每个回合的初始状 态,每回合持续 12 h 即 240 个时间步。

图 2 算例配电网拓扑结构

表 2 分布式资源参数

设备类型	数量	1 .	安装节点	/支路
PV	8	7 \34	50,63,76	,95 ,126 ,138
WT	8	18、4	5 \ 56 \ 72 \ 90	、99、110、149
ESS	5		10,52,92,1	40,151
FL	2		82,12	20
	쿢	長3 ESS 参	数	
$E_{ m ESS}^{ m max}$	$P_{ m c}^{ m max}$	$P_{ m dc}^{ m max}$	$\sigma_{ m sdr}$	$S_{\rm oc}(i,0)$
1.2	0.025	-0.025	0.01	0.5

表 4 MADDPG 算法	去参梦	敳
---------------	-----	---

参数类型	值
∂_1	0.8
∂_2	0.1
∂_3	0.1
γ	0.99
$R_{ m done}$	-50
au	0.000 1
学习率	0.000 1
D规模	5000
最大回合数	8000
最大时间步	240
激活函数	ReLU
$(a_{ m PV}^{ m min}$, $a_{ m PV}^{ m max}$ $)$	(-0.6,0.6)
$(a_{ m WT}^{ m min}$, $a_{ m WT}^{ m max}$ $)$	(-0.6,0.6)
$(a_{ m ESS}^{ m min},a_{ m ESS}^{ m max})$	(-0.8,0.8)
$(a_{ m FL}^{ m min}$, $a_{ m FL}^{ m max}$ $)$	(-0.3,0.3)

4.2 训练结果分析

图 3 展示了 10 000 回合训练过程中每回合平 均累计奖励变化曲线。由图可以看出:在训练初期 智能体获得的奖励为很小的负值,说明此时总体处 于探索阶段,尚未学习到有效的行动策略;在 1000 到 3500 回合左右奖励逐渐上升并达到稳定,说明智 能体性能在学习过程中不断增强,已经能够学习并 适应环境中的状态变化;4000 回合左右奖励收敛至 稳定状态,说明此时已经达到了比较理想的控制效 果,验证了所用 MADRL 算法在求解分布式广域电 压调控问题的有效性。

4.3 测试结果分析

在测试集中随机选取连续3天数据进行测试, 共1440个时间步,每个时间步持续时间为3min,测 试平均耗时2.65s,图4为测试结果。为方便展示, 负荷、PV、WT、柔性负荷有功和无功功率取每小时 的平均值,ESS充放电功率取每小时所有时间步的 有功功率之和。

通过测试结果可以看出:PV、WT 逆变器可以感

图 4 在线测试结果

知并适应配电网中无功需求的变化实时调节自身无 功系数,实现全网无功功率平衡;ESS可以感知并适 应配电网中有功需求的变化实时调节自身与电网的 交换功率,实现全网有功功率平衡;柔性负荷在负荷 高峰期通过需求侧响应降低自身需求功率,在低谷 期通过需求侧响应提高自身需求功率;ESS 的 SOC 始终在(0.2,0.8)范围内,说明分布式储能在参与电 压管控的过程中能够保持一定的后备容量,网络损 耗始终保持在较低水平(0.005~0.020 pu),说明各种分布式资源在参与电压管控的同时能够兼顾网络的损耗;系统所有结点的平均电压在连续3天的测试结果中均保持在(0.98,1.01)范围内,节点95最高电压为1.034,最低电压为1.002;节点105最高电压为1.007,最低电压为0.977,说明通过对源网荷储的广域分布式控制,可以监测并实现电网的实时稳定。

为更好地验证所提广域电压自趋优管控方法 相比传统调压方法的优越性,设置对比算例:将网 络中6台变压器改造为OLTC,每个OLTC含有5个 抽头位置(-2~+2),增设3台电压调节器(voltage regulators, VR),每个VR含有21个抽头位置(-10 ~+10),OLTC和VR的调节范围均为±10%;增设3 台CB,每个CB含有4个调节单元,共2.4 MVar的 调节能力(0.6 MVar/单元),各元件的最小动作间隔 为1h;在测试集中随机选取1天进行测试。使用电 压控制率、电压最大偏差作为衡量指标,测试对比结 果如表5所示。由对比结果可以看出在电压调控过 程中,使用OLTC、CB等传统调压手段无法适应新 型配电系统中 RDG、负荷的快速波动,电压控制率 仅为68.2%,部分节点电压出现严重越限。

表 5 两种方法测试对比结	果
---------------	---

电压调控方法	电压控制率/%	电压最大偏差
所提方法	100.0	0.008
传统方法	68.2	0.862

5 结 论

上面提出了一种基于数据驱动的新型配电系统 分布式源网荷储资源广域电压自趋优管控方法,通 过配电网分布式资源的协调互动实现对电网电压的 广域控制。同时,将新型配电系统中的光伏、风电、 ESS、柔性负荷等分布式资源建模为智能体,使用基 于数据驱动的 MADDPG 算法进行求解,避免了传统 优化方法对精确模型的依赖。仿真结果表明,所提 方法能够实现保留分布式储能后备容量,降低网损 的同时提高全网电压水平,使各节点电压始终处于 安全范围内,整个过程是自趋优进行的,相比传统调 压策略更加符合新型配电系统中实时可靠性的电压 调控需求。

参考文献

- [1] 陈文溆乐,向月,彭光博,等."双碳"目标下电力系统 供给侧形态发展系统动力学建模与分析[J].上海交通 大学学报,2021,55(12):1567-1576.
- [2] 董旭柱,华祝虎,尚磊,等.新型配电系统形态特征与技术展望[J].高电压技术,2021,47(9):3021-3035.
- [3] 重庆市人民政府办公厅,四川省人民政府办公厅.关 于印发推动川渝能源绿色低碳高质量发展协同行动 方案的通知:渝府办发[2022]91号[Z/OL].[2022-08 -20].http://www.cq.gov.cn/zwgk/zfxxgkml/szfwj/qtgw/ 202208/t20220817-11015192.html.
- [4] FUSCO G, RUSSO M. A decentralized approach for voltage control by multiple distributed energy resources [J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3115–3127.
- [5] CARLI R, CAVRARO G. Algorithms for voltage control in distribution networks [C]. 2015 IEEE International Conference on Smart Grid Communications (SmartGrid-Comm), 2015: 737-742.
- [6] 刘蕊,吴奎华,冯亮,等.含高渗透率分布式光伏的主动 配电网电压分区协调优化控制[J].太阳能学报,2022, 43(2):189-197.
- [7] SUN X Z, QIU J, YI Y, et al. Cost-effective coordinated voltage control in active distribution networks with photovoltaics and mobile energy storage systems [J]. IEEE Transactions on Sustainable Energy, 2022,13(1): 501-513.
- [8] 史景坚,周文涛,张宁,等.含储能系统的配电网电压 调节深度强化学习算法[J].电力建设,2020,41(3): 71-78.
- [9] WANG Z Y, WANG J H, CHEN B K, et al. Mpc-based voltage/var optimization for distribution circuits with distributed generators and exponential load models [J]. IEEE Transactions on Smart Grid, 2014,5(5): 2412-2420.
- [10] DE Souza BA, DE Almeida M F, Multi-objective optimization and fuzzy logic applied to planning of the volt/var problem in distributions systems [J]. IEEE Transactions on Power Systems, 2010, 25(3): 1274-1281.
- [11] YAO Haotian, XIANG Yue, HU Shuai, et al. Optimal prosumers' peer-to-peer energy trading and scheduling in distribution networks [J]. IEEE Transactions on Industry Applications, 2022,58(2): 1466-1477.
- [12] CAPITANESCU F, BILIBIN I, RAMOS E R. A comprehensive centralized approach for voltage constraints management in active distribution grid [J]. IEEE Transactions on Power Systems, 2014, 29 (2): 933-942.

(下转第26页)

- [7] 张霞, 杜丽敏. 仿真网格中一种基于匹配度的改进 Min-Min 调度算法[J]. 山西大学学报(自然科学版), 2016, 39(2):223-228.
- [8] 董思岐,李海龙,屈毓锛,等.面向优先级用户的移动边缘计算任务调度策略[J].计算机应用研究,2020,37(9):2701-2705.
- [9] MUNOZ O, PASCUAL-ISERTE A, VIDAI J. Joint allocation of radio and computational resources in wireless application offloading[C]// 2013 Future Network & Mobile Summit, Lisboa, IEEE, 2013:1-10.
- [10] LIU C F, BENNIS M, POOR HV. Latency and reliabilityaware task offloading and resource allocation for mobile edge computing [C]. 2017 IEEE Globecom Workshops (GC Wkshps). Singapore, IEEE, 2017:1-7.
- [11] KOKILAVANI T, George AMALARETHINAM D I. Load balanced min-min algorithm for static meta-task scheduling in grid computing[J]. International Journal of Computer Applications, 2011,20(2):43-49.
- [12] MORENO R, ALONSO-CONDE A B. Job scheduling and resource management techniques in economic grid environments[M] //Grid Computing, Lecture Notes in Computer Science, 2010:25-32.
- [13] SARDELLITTI S, SCUTARI G, BARBAROSSA S. Joint
- ************************************
- (上接第8页)
- [13] LIU W L, CHAI Y X, XIANG Y, et al. Investment model and its multi-year rolling deduction based on a data-driven method for distribution network [C] // 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 2020:560-564.
- XU B H, XIANG Y, PAN L, et al. Agent-based optimal cooperative operation of multi-energy system [C] //2021
 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 2021: 520-525.
- [15] 廖文龙. 基于数据驱动的配电网动态最优潮流算 法[D].天津:天津大学,2020.
- [16] WANG S Y, DUAN J J, SHI D, et al. A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning[J]. IEEE Transactions on Power Systems, 2020,35(6): 4644-4654.
- [17] VARMA R, SIAVASHI E. PV-STATCOM a new smart inverter for voltage control in distribution systems[C] // 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018:1-1.
- [18] 王静.含分布式能源的配电网优化运行策略研究[D]. 武汉:武汉大学,2019.

optimization of radio and computational resources for multicell mobile-edge computing [J]. IEEE Transactions on Signal and Information Processing over Networks, 2015, 1(2): 89-103.

- [14] MAO Y Y, ZHANG J, LETAICH K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices [J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590-3605.
- [15] 陈俊,黄飞宇,黎作明.基于 DQN 的电力物联网
 5G边缘切片资源管理研究[J].电测与仪表,2022,
 59(1):155-161.

作者简介:

谢 欢(1994),男,硕士,工程师,从事电力通信工作;

杜 书(1983),男,博士,高级工程师,从事电力通信 工作;

陈少磊(1985),男,博士,高级工程师,从事电力通信 工作;

马 玫(1982),女,硕士,高级工程师,从事电力通信 工作;

张秋铭(1995),女,硕士,工程师,从事电力信息工作; 邓冰妍(1996),女,硕士,工程师,从事电力大数据工作。 (收稿日期:2022-09-13)

- [19] LIU Y B, XIANG Y. TANG Z, et al. Sizing approach of distributed energy storage system in the presence of aggregators [C] // IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 2019:3256-3261.
- [20] UCI Machine Learning Repository. ElectricityLoad-Diagrams20112014 Data Set [EB/OL].[2022-04-24]. https://archive.ics.uci.edu/ml/datasets/Electricity LoadDiagrams20112014.
- [21] Elia. The data of Solar and wind power generation [EB/OL].[2022-04-24]. https://www.elia.be/en/ grid-data/power-generation.

作者简介:

卢 宇(1999),男,硕士研究生,研究方向为新型配电系统优化运行;

向 月(1987),男,博士,副教授,研究方向为配电系统 优化运行与规划等;

刘俊勇(1963),男,博士,教授,从事电力系统分析、智能电网等工作;

曾平良(1962),男,博士,教授,从事电力系统分析与规 划等工作。

(收稿日期:2022-08-24)