多馈入直流系统换流母线动态电压稳定性分析

井艳清 汪 淼

(国核电力规划设计研究院 北京 100095)

摘 要: 直流输电系统中换流器运行时消耗大量的无功功率,致使逆变侧的电压稳定问题最为突出,若所联交流系统 强度较弱,则电压稳定问题更为严重。近年来,国内直流输电系统陆续投产,直流系统间的相互作用使得多馈入直流 系统的电压稳定性更为复杂,仅研究单条直流系统的电压稳定性已无法满足工程实际需求。以两馈入直流系统模型 为例,研究换流母线补偿的无功大小、直流间耦合程度、以及多馈入短路比大小对多馈入直流系统换流母线电压稳定 性的影响。NETOMAC 仿真结果表明,在多馈入直流系统中,在一定范围内增大换流母线无功功率补偿、减小直流系 统间电气距离、增大所联系统多馈入短路比均对动态电压稳定有利。

关键词: 多馈入直流输电系统; 动态电压稳定; 直流系统间电气距离; 电压稳定临界点; 多馈入短路比

Abstract: Converters of HVDC transmission system consume a large amount of reactive power, so that the voltage stability problem in inverter side is most prominent, if the coupling strength of AC system is weak, the voltage stability problem is more serious. In recent years, DC transmission system has been gradually put into operation in China and the interactions between DC systems make the voltage stability of multi – infeed DC system more complex, so studying the voltage stability only in single DC system cannot meet the actual needs of the project. Taking the model of two – infeed HVDC transmission system for example, the impacts of reactive power compensation, degree of coupling between direct currents and multi – infeed short – circuit ratio on the voltage stability of multi – infeed HVDC system are studied. NETOMAC simulation results show that for multi – infeed HVDC transmission system the voltage stability can be improved by appropriately increasing the compensation of reactive power at commutation buses, reducing the electrical distance between HVDC systems and increasing multi – infeed short – circuit ratio of the connected HVDC system.

Key words: multi – infeed HVDC transmission system; dynamic voltage stability; electrical distance between HVDC systems; voltage stability critical point; multi – infeed short – circuit ratio

中图分类号: TM712 文献标志码: A 文章编号: 1003 - 6954(2014) 04 - 0023 - 04

0 引 言

直流输电系统运行中,换流器消耗的无功功率 约占直流输送功率的40%~60%,而系统无功支撑 不足正是其电压不稳定的主要原因,因此逆变侧的 电压稳定问题尤为突出^[1-5]。另外,直流输电系统 的电压稳定还受所联交流系统的强度影响,交流系 统强度在多馈入直流系统中体现为多馈入短路比。 随着国内多条直流输电系统的陆续投产,迫切需要 研究多馈入直流系统的动态电压稳定性。

文献 [6]利用多馈入短路比指标分析了受端电 网的强度,并讨论了直流系统落点位置对多馈入短 路比的影响; 文献 [7]利用简化单馈入直流输电系 统模型分析了直流输送功率极限与换流节点电压稳 定性之间的关系; 文献 [8]以两馈入直流系统简化 模型为基础,研究计及直流间相互作用后,多馈入直 流系统运行状态变化、直流间耦合程度以及直流系 统多馈入短路比大小对多馈入直流系统功率输送能 力的影响。直流换流器运行时消耗大量无功功率, 众多研究表明,在直流输电系统中稳定性问题最值 得关注的是电压稳定问题^[9-11]。相较于纯交流输 电系统和单条直流输电系统,多馈入直流输电系统 结构更为复杂,直流间复杂的相互作用对多馈入直 流系统电压稳定影响较大^[12-18],多馈入直流系统的 电压稳定性需要进一步深入研究。

基于以往直流输电系统的研究,建立两馈入直 流输电系统简化模型,研究考虑直流间相互作用情 况下,消耗无功大小、直流间耦合程度、以及多馈入 短路比大小对多馈入直流系统电压稳定性的影响,

• 23 •

并采用德国西门子公司开发的 NETOMAC 程序进行 仿真。

1 两馈入直流系统简化模型

对多馈入直流系统相互作用机理的分析,采用 图1所示的两馈入直流系统简化模型进行研究。模 型中,交流系统采用戴维宁等效电路,即用一固定阻 抗Z串联一固定电动势E串联来模拟。此模型对 应于扰动发生后100~300 ms内交流系统特性,此 时同步发电机的励磁调节器和交流系统的其它电压 控制装置还未来得及响应。由于在逆变运行时,直 流系统对交流系统强度的要求更高,因此假定模型 中换流器均视为逆变器。

图1 两馈入直流系统简化模型

图 1 中 $E_i \angle \psi i$ 为交流系统等值电势; $Z_i \angle \theta_i$ 为 交流系统等值阻抗; $Z_{12} \angle \theta_{12}$ 为交流系统之间的耦合 阻抗; $P_i \ Q_i$ 为交流系统有功和无功功率; $P_{di} \ Q_{di}$ 为 直流系统有功和无功; $P_{ij} \ Q_{ij}$ 为交流系统之间的有 功和无功交换; $U_i \angle \delta_i$ 为换流站交流母线电压; b_{ci} 为 交流滤波器和无功补偿电容的等值导纳; $U_{di} \ I_{di}$ 为 直流电压和电流,其中 i, j = 1 2, 且 $i \neq j$ 。

2 多馈入短路比

交直流相互作用强度的大小,主要取决于交流 系统短路容量相对于直流系统额定容量的强弱,即 短路比指标。文献[11]给出了考虑多条直流相互 作用和影响后,直流系统*i*的多馈入短路比(multi – infeed short circuit ratio,MSCR)为

$$K_{\rm MSCRi} = \frac{U_i^2 / |Z_{eqii}|}{P_{di} + \sum_{j=1}^n |Z_{eqij} / Z_{eqii}| P_{dj}}$$
(1)

式中 *U_i* 为直流系统 *i* 换流母线电压; *Z_{eqij}* 为从各直 流换流母线看进去的等值节点阻抗矩阵 *Z_{eq}* 的第 *i* 行、第 *j* 列元素; *P_{di}、P_{dj}*为直流系统 *i、j* 的直流功率。 若以换流母线额定电压 *U_i* 为基准电压 则可得到 •24•

$$K_{\rm MSCRi} = \frac{1}{|Z_{eqii}|P_{di} + \sum_{i=1}^{n} |Z_{eqij}|P_{dj}}$$
(2)

若考虑换流站换流母线侧的并联无功补偿设备 的影响,则可推广定义多馈入有效短路比(multi – infeed effective short circuit ratio,MESCR)。

$$K_{\text{MESCRi}} = \frac{1/|Z_{eqii}| - 1/|Z_{ci}|}{P_{di} + \sum_{i=1, i \neq i}^{n} |Z_{eqij}/Z_{eqii}| P_{di}}$$
(3)

式中 *Z_a*为直流系统 *i* 对应滤波器及无功补偿的阻抗值。

以两馈入直流系统简化模型为例,如图1所示, 等值节点阻抗 Z_{enii}表达式为

$$| Z_{eq11} | = \frac{| Z_1 Z_2 | + | Z_1 Z_{12} |}{| Z_1 | + | Z_2 | + | Z_{12} |}$$
(4)

$$|Z_{eq12}| = \frac{|Z_1|Z_2|}{|Z_1| + |Z_2| + |Z_1|}$$
(5)

$$|Z_{eq22}| = \frac{|Z_1Z_2| + |Z_2Z_{12}|}{|Z_1| + |Z_2| + |Z_{12}|}$$
(6)

3 电压稳定分析

3.1 数学模型描述

针对图 1 所示的两馈入直流系统简化模型,可 用以下 11 个方程来描述整个模型系统的特性。

$$P_{di} = C_{i}U_{i}^{2} [\cos 2\gamma_{i} - \cos(2\gamma_{i} + 2\mu_{i})]$$
(7)

$$Q_{di} = C_{i}U_{i}^{2} [2\mu_{i} + \sin 2\gamma_{i} - \sin(2\gamma_{i} + 2\mu_{i})]$$
(8)

$$I_{di} = K_{i}U_{i} [\cos\gamma_{i} - \cos(\gamma_{i} + \mu_{i})]$$
(9)

$$U_{di} = P_{di}/I_{di}$$
(10)

$$P_{i} = [U_{i}^{2}\cos\theta_{i} - E_{i}U_{i}\cos(\delta_{i} + \theta_{i} - \psi_{i})]/|Z_{i}|$$
(11)

$$P_{ij} = \left[U_i^2 \cos \theta_{ij} - U_i U_j \cos(\delta_i + \theta_{ij} - \delta_j)\right] / |Z_{ij}|$$
(12)

$$Q_i = \left[U_i^2 \sin \theta_i - E_i U_i \sin(\delta_i + \theta_i - \psi_i)\right] / |Z_i|$$
(13)

$$Q_{ij} = \left[U_i^2 \sin \theta_{ij} - U_i U_j \sin(\delta_i + \theta_{ij} - \delta_j)\right] / |Z_{ij}|$$

$$Q_{ci} = b_{ci} U_i^2 \tag{15}$$

$$P_{di} = P_i + P_{ij} \tag{16}$$

$$Q_{di} + Q_i + Q_{ij} = Q_{ci}$$
 (17)

式中 i, j = 1 2 ,且 $i \neq j; \gamma_i$ 为熄弧角; μ_i 为换向角; C_i 和 K_i 为与换流变压器参数及与直流系统基准值 有关的 2 个常数 ,其中 C_i 的表达式为

$$C_{i} = 3S_{Ti} / (4\pi P_{dNi} u_{ki\%} \tau_{i}^{2})$$
(18)

式中 *S*_{Ti}为换流变压器的容量; *P*_{dNi}为直流系统额定

容量; $u_{ki\%}$ 为短路比; τ_i 为变压器分接头。

在上述方程的变量中 $S_{Ti} \cdot u_{ki\%} \cdot C_i \cdot K_i \cdot b_{ci} \cdot \tau_i$ 为 换流站设备参数。 $|Z_1| \cdot \theta_1 \cdot |Z_2| \cdot \theta_2 \cdot |Z_{12}| \cdot \theta_{12}$ 为受 端系统参数。若在系统运行过程中,不改变变压器 分接头和不投切补偿电容器,则可认为换流站设备 参数是固定不变的。同样在系统运行方式确定后, 受端系统参数也是固定的。交流系统采用戴维宁等 效电路得到的等效电动势 E_i 也假定是固定的。这 样上述方程中剩余的运行状态变量: $\gamma_i \cdot \mu_i \cdot U_{di} \cdot I_{di}$ 、 $P_{di} \cdot Q_{di} \cdot U_i \cdot \delta_i \cdot P_i \cdot P_{ij} \cdot Q_i \cdot Q_{ij} \cdot Q_{ci} (ij = 1, 2, \pm i \neq j)$ 共有 26 个。而方程(7) ~ (17) 在 $i, j = 1, 2 \pm i \neq j$ 情况下共有 22 个约束方程。因此一旦确定 26 个状 态变量中的任意 4 个变量,其余变量也就能被确定。

在图 1 所示的两馈入直流系统简化模型中,2 条直流均工作在恒定熄弧角/恒定电流控制方式。 在以下分析中,选取 $\gamma_1 \cdot I_{d_1} \cdot \gamma_2 \cdot I_{d_2}$ 为独立分量。首 先假定换流站设备参数和受端系统参数,暂定 S_{Ti} = 1.15 P_{dNi} , u_{ki} = 0.18, τ_i = 1,对应的 C_i = 1.53。取 $Q_{eNi} = Q_{dNi} = (0.5 \sim 0.6) P_{dNi}$,受端系统参数 $|Z_1|$ = 1/2, $|Z_2| = 1/4$, $|Z_{12}| = 1$ $\theta_1 = \theta_2 = \theta_{12} = 90^\circ$ 则2条 直流系统的多馈入有效短路比由式(3)计算为 $K_{\text{MESCR1}} = 1.84 K_{\text{MESCR2}} = 3.06$ 。

模型系统在额定状况下运行时,有 $\gamma_i = \gamma_N =$ 18°, $U_i = 1$, $P_{di} = 1$, $I_{di} = 1$ 。可由式(7)确定 μ_{Ni} ,由式 (9)确定常数 K_i ,又由式(8)、(15)确定 b_{ci} ,最后取 $E_1 \angle \psi_1$ 为平衡节点,由式(16)、(17)确定交流系统 等效电源参数。保持交流系统等效电源参数不变, 对于给定的 γ_1 、 I_{d1} 、 γ_2 、 I_{d2} ,求解式(9)、(16)、(17) 组成的非线性方程组,可以求出状态变量 U_i 、 U_j 、 δ_i 、 δ_j 、 μ_i 、 μ_j ,从而确定其余所有的运行状态变量。通 过以上方法,可以画出在给定不同的 γ_1 、 I_{d1} 、 γ_2 、 I_{d2} 时 状态变量 Q_a 随 U_1 的变化曲线。

3.2 Q-U特性曲线分析

图 1 中直流系统 1 工作在恒定熄弧角控制方式 时,直流系统 2 的电流不发生变化,且保持稳定运 行。 Q_{ai} 减小时, U_1 随之减小, Q_{ai} 减小到某一值时, 潮流开始不收敛,因此存在该运行方式下的电压稳 定临界点,即Q = U曲线最低点。

两馈入直流系统简化模型中直流系统1单独运 行和与直流系统2形成多馈入运行2种情况的Q-U 特性曲线如图2所示。图2中横坐标为直流系统1 的换流母线电压 纵坐标为直流系统1换流母线注入 的无功功率 单位均为标幺值。当系统运行在电压稳 定临界点的左侧时 ,系统是不稳定的; 当系统运行在 电压稳定临界点的右侧时 系统是稳定的。由图 2 看 出 直流系统 1 单独运行时 ,电压稳定临界点为 $U_1 =$ 0.85。当与直流系统 2 相联形成多馈入运行后 ,直流 系统 1 的电压稳定临界点为 $U_1 = 0.8$,位于直流系统 1 单独运行时的左侧。这说明与强交直流系统相联 , 能有效提高交直流系统换流母线电压稳定性。

图 2 单馈入与多馈入 Q-U 特性曲线

计及直流间相互作用后,任意直流系统运行状态变化都会对其他直流系统电压稳定性造成影响。 让图 1 模型 2 条直流均工作在恒定熄弧角控制方式 $\gamma_1 = \gamma_2 = 18^\circ$,设定 Q_{c2} 为 0.1 ~ 1.0 p. u. 之间的任意 常数,这样对应每一个 Q_{c2} 都能画出一条 Q_{c1} 随 U_1 的 变化曲线,如图 3 所示。

图 3 不同 Q_{a2} 的多馈入 Q - U 特性曲线

由 3 条曲线对比可看出,直流系统 2 换流母线 注入的无功 Q_a变化对直流系统 1 电压稳定性的影 响,当直流系统 2 换流母线注入的无功越大,第 1 回 直流的电压稳定裕度越大,所能达到的多馈入直流 系统电压稳定裕度也越大。

在多馈入直流系统中,各直流系统之间通过联 接在换流母线上的耦合阻抗 Z_{12} 来相互作用。耦合 阻抗 Z_{12} 的大小,反映了直流系统1、2 之间电气耦合 的紧密程度。 Z_{12} 越小,表明直流系统1、2 之间电气 距离越近,两个直流系统耦合程度越紧密。图4 给 出了当耦合阻抗 Z_{12} 取不同值时,直流系统1的无功 功率 Q_{c1} 随 U_1 的变化曲线。图4 表明减小与强交直 流系统之间的电气距离,能有效提高较弱直流系统

• 25 •

电压稳定裕度 改善系统稳定性。

在单条直流系统电压稳定分析中得到,直流系 统短路比 SCR 越小,其电压稳定性越差。提高直流 系统短路比,可以有效改善系统稳定性,提高电压稳 定裕度。为考察两馈入直流系统简化模型中直流系 统2短路比大小的变化对直流系统1电压稳定性的 影响,设定直流系统2受端系统参数 $|Z_2|$ 分别为 1/7、1/2。从而得到直流系统2多馈入有效短路 比 3.81、1.56。两种情况下,直流系统换流母线注 入的无功功率 Q_{cl} 随 U_1 的变化曲线,如图5所示。

图 5 不同 K_{MESCR2}的多馈入 Q - U 特性曲线 对比曲线得出,适当提高直流系统 2 的多馈入 有效短路比大小,能有效提高直流系统 1 的电压稳 定裕度。

4 结 论

(1)与强交直流系统相联形成多馈入直流系统 统 能有效增大较弱直流系统的电压稳定裕度 改善 系统稳定性。

(2)在多馈入直流系统中,在一定范围内增大 换流母线无功功率补偿、减小与强直流系统间电气 距离、增大所联系统多馈入有效短路比均能有效增 大直流系统的电压稳定裕度。

参考文献

- Kunder P. Power system stability and control [M]. 北京: 中国电力出版社 2002:648-689.
- [2] 李兴源. 高压直流输电系统的运行和控制 [M]. 北京:科学出版社,1998:153 167.
- [3] 赵畹君. 高压直流输电工程技术 [M]. 北京: 中国电力 出版社 2004: 10 – 25.
- [4] 倪以信,陈寿孙,张宝霖.动态电力系统的理论和分 析[M].北京:清华大学出版社,2002.
- [5] 周双喜,朱凌志,郭锡玖,等.电力系统电压稳定性及 其控制[M].北京:中国电力出版社,2004.
- [6] 邵瑶 汤涌 郭小江 ,等. 多直流馈入华东受端电网暂态 电压稳定性分析[J]. 电网技术 2011 ,35(12):50-55.
- [7] 邱革非,束洪春,董俊,等.联于弱交流系统的HVDC 输电系统输电能力和电压稳定性的研究[J].昆明理 工大学学报:理工版 2005 30(3):50-55.
- [8] 陈虎 张英敏,贺洋,等.多馈入直流输电系统功率稳 定性分析[J].电网技术 2011 35(6):50-54.
- [9] 林伟芳 汤涌,卜广全.多馈入交直流系统电压稳定性 研究[J].电网技术 2008 32(11):7-12.
- [10] 邵瑶,汤涌.多馈入交直流混合电力系统研究综述 [J].电网技术2009,33(17):24-30.
- [11] 林伟芳 ;汤涌 ,卜广全. 多馈入交直流系统短路比的定 义和应用[J]. 中国电机工程学报 2008 28(31):1-8.
- [12] 邵瑶 汤涌.采用多馈入交互作用因子判断高压直流
 系统换相失败的方法 [J]. 电机工程学报 ,2012 ,32
 (4):108-114.
- [13] 蔡泽祥 朱浩骏,白雪峰,等.多馈入直流输电系统的 动态特性及稳定控制与分析[J].华北电力大学学 报 2004 31(5):1-8.
- [15] 吴冲 李兴源 何朝荣. 多馈入直流交互作用因子在换相 失败研究中的应用[J]. 继电器 2007 35 (9):26-31.
- [16] 徐政.交直流电力系统动态行为分析 [M]. 北京: 机 械工业出版社 2004:67-71.
- [17] Denis L H A ,AnderssonG. Voltage Stability Analysis of Multi – infeed HVDC Systems [J]. IEEE Transactions on Power Delivery ,1997 ,12(3):1318 – 1308.
- [18] Paulo F D T ,Bernt B ,Gunnar A. Multiple Infeed Short CircuitRratio: Aspects Related to Multiple HVDC Into one AC Network [C]// Transmission and Distribution Conference & Exhibition: Asia and Pacific , Dalian ,China: IEEE 2005: 1 – 6.

作者简介:

并艳清(1987),助理工程师,硕士,主要研究方向为电 力系统前期规划咨询及稳定与控制;

王 森(1976),高级工程师,博士,主要从事电力系统 规划及咨询、稳定与控制工作。

(收稿日期:2014-05-26)

• 26 •